Guillain-Barré syndrome in children

Coriene Catsman-Berrevoets

Paediatric neurologist

Erasmus MC - Sophia

Rotterdam, the Netherlands

EPNS teaching course, Budapest march 2015

Erasmus MC

GBS

Guillain-Barré syndrome (GBS) is the most common cause of acute flaccid paralysis in children since the successful vaccination programs against poliomyelitis.

Estimated incidence of GBS in children (0-15 yrs) is 0.34 to 1.34 /100.000 per year (in adults: 1:100.000 persons/ year)

Erasmus M

Symptoms of periferal versus central nervous system

Periferal nervous system:

- Anterior horn motor neuron
- Afferent and efferent roots
- Sensory-motor nerve
- Neuromuscular junction

Muscle

Felten & Shetty: Netter's Atlas of Neuroscience, 2nd Edition. Copyright C 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved.

enlargement

of spinal cord

In cervical enlargement

of spinal cord

Symptoms of periferal versus central nervous system

Periferal nervous system:

- Anterior horn motor neuron
- Afferent and efferent roots
- Sensory-motor nerve
- Neuromuscular junction
- Muscle

Symptoms:

- Paresis/ paralysis
- Hypotonia
- Low or absent reflexes
- fasciculations

Felten & Shetty: Netter's Atlas of Neuroscience, 2nd Edition. Copyright © 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved.

Diagnostic criteria

Essential criteria

- Progressive, more or less symmetrical weakness of 2 or more limbs
- Areflexia / hyporeflexia
- Most severe paresis < 4 weeks
- No other cause

Findings supporting a diagnosis of GBS

Essential criteria

- Progressive, more or less symmetrical weakness of 2 or more limbs
- Areflexia / hyporeflexia
- Most severe paresis < 4 weeks
- No other cause

Findings supporting GBS diagnosis (not always present)

- Sensory deficits, pain, facial weakness
- Difficult in swallowing, respiratory insufficiency
- Spinal fluid abnormalities
- EMG abnormalities

- in the first week after onset in 50 % of GBS patients normal
- after two weeks 80% has a raised spinal fluid protein content
- cell number is normal or slightly raised
 (< 50 cells x 106 mononuclear cells

EMG

It is typically prudent to wait at least 7-10 days for electrical studies to be informative.

If electrical studies are performed too early, normal results can be falsely reassuring.

EMG

First week after onset of symptoms

- dispersed, impersistent, prolonged, or absent F response (88%)
- increased distal latencies (75%)
- conduction block (58%) or temporal dispersion of compound muscle action potential (CMAP)
- reduced conduction velocity (50%) of motor and sensory nerves

Second week of illness

- reduced compound muscle action potential (CMAP, 100%)
- prolonged distal latencies (92%)
- reduced motor conduction velocities (84%) are prominent.

Erasmus MC

EMG

Criteria for axonal forms of GBS include

- lack of neurophysiologic evidence of demyelination
- loss of amplitude of CMAP or sensory nerve action potentials to at least less than 80% of lower limit of normal values for age

Erasmus MO

Symptoms that may point to another diagnosis than GBS

- Relatively mild paresis of arms and legs and:
 - severe pulmonary dysfunction
 - severe sensory deficits
 - clear deficits of bladder and/ or bowel
- Fever
- Sensory level
- Slow progression (> 4 weeks)
- Clear and persisting asymmetry of muscle weakness
- Persisting bladder and bowel dysfunction
- Spinal fluid > 50 x 106/ mononuclear cells

Clinical GBS variants

- acute inflammatory demyelinating polyradiculopathy
- acute motor axonal neuropathy
- acute motor and sensory axonal neuropathy
- Miller Fisher syndrome (ophthalmoplegia, absent tendon reflexes, ataxia) GQ1b ganglioside often positive!

Erasmus M

RARE GBS variants

- pharyngeo-cervical brachial variant
- pure sensory axonal neuropathy
- Bickerstaff encephalitis

Histological classification of GBS

Demyelination

Acute inflammatory demyelinstin neuropathy (AIDP)

Axonal degeneration

Acute motor axonal neuropathy (AMAN) Erasmus MC

zalus

Differential diagnosis

(Sub)acute flaccid paresis in children

- Poliomyelitis
- Lyme disease (Borrelia)
- Botulism
- Spinal Muscular Atrophy (SMA)
- Myelopathie
- Myasthenia gravis
- Toxic: arsenic acid, thallium, organic phosphates
- Wernicke disease
- Critical illness polyneuropathie
- Vasculitis
- Toxins of weird animals

Black widow

Diagnosis in children is often difficult....

First diagnosis in our cohort of 56 children

75% of the children < 6 years old: pain in neck and or legs

- First diagnosis in majority: 'flue', pneumonia, suspicion of a metabolic disease, myopathy, tonsillitis, acute rheumatic fever
- 3 malignancy, 2 meningitis, 4 coxitis
- 1 no idea
- 7 suspicion of Guillain-Barré syndrome

Hypothesis of pathogenesis GBS: molecular mimicry

Clinical disease pattern in GBS

Antibodies in GBS patients are against ganglioside

Treatment

Admit a child to ICU

- rapid progression of motor deficits
- threat of airway obstruction or respiratory insufficiency
- impairment of autonomic functions
- severe swallowing problems

Erasmus MO

Treatment with IVIg of children with GBS

Indicated when:

- Unable to walk independently
- (threat of) respiratory insufficiency
- Bulbar weakness
- Autonomic dysfunction
- Fast progression of symptoms

• Repeated infusions of IVIg are indicated when:

- Deterioration after initial stabilisation or amelioration
- No or insufficient effect of first IVIg treatment ?

Erasmus MO

Prognosis

More favourable than in adults!

- at the moment of maximum neurological symptoms walking with aid : 45%
 Bed/wheelchair : 40-60%
 Mechanical ventilation: 15-20%
 Death: : 1-2 %
- Treatment related fluctuation : 10% relapse < 4weken
- Transition tor CIDP : 2% relapse > 4 weken

Prognosis

Mortality Adults: 2,8% Children 2%

Needs ventilation Both 25%

Outcome 6 months Non-ambulant 6% children 20% adults

Long term sequelae in 37 patients with childhood GBS

23/37 were now adults (age range 4-39 y, median 20 years) Follow up: 1-22 years (median 11 years)

26% had problems at school after GBS
13% had to repeat a class
11% had to continue at a lower level at school
3% (one child) could not go to school because of evere fatigue

11% could not work because of sequalae

Roodbol et al. J Peripher Nerv Syst. 2014

Long term sequelae

Risk of recurrence of GBS is low (1 à 2%)

Prognosis for regaining ambulation is excellent

In our cohort 10% had a persisting handicap

BUT

50% still suffered from fatigue, which was very disabling in some

Erasmus MO

Conclusions GBS in children

- In children < 6 years diagnosis can be difficult
- Often atypical presentation with a lot of pain
- In case of rapid neurological deterioration ICU monitoring
- Prognosis of GBS in children is in general better than in adults, maybe because of better nerve regeneration
- At long term persisting neurological impairments, handicaps and fatigue may occur

Erasmus MO

Thanks to: GBS- kids study group

Paediatric Neurology Joyce Roodbol Marie-Claire de Wit Coriene Catsman

Paediatrics Annemarie van Rossum Emiel Spuesens Matthijs de Hoog *Neuroimmunology* Bart Jacobs Christa Walgaard

Neurphysiology Judith Drenthen Joleen Blok

