Quality of Survival after CNS tumours in childhood

Colin Kennedy

AIMS OF NEURO-ONCOLOGY

ALTER THERAPY

after Duffner EJPN 2010, 14, 106

Quality of survival after childhood brain tumours

- The big picture
- Illustrations in posterior fossa tumours
 - Chemotherapy
 - Variations on radiotherapy
 - Psychosocial factors
 - Surgery
 - Current work with on-line tools

the big picture

An NCI-funded

Socio-demographic Outcomes

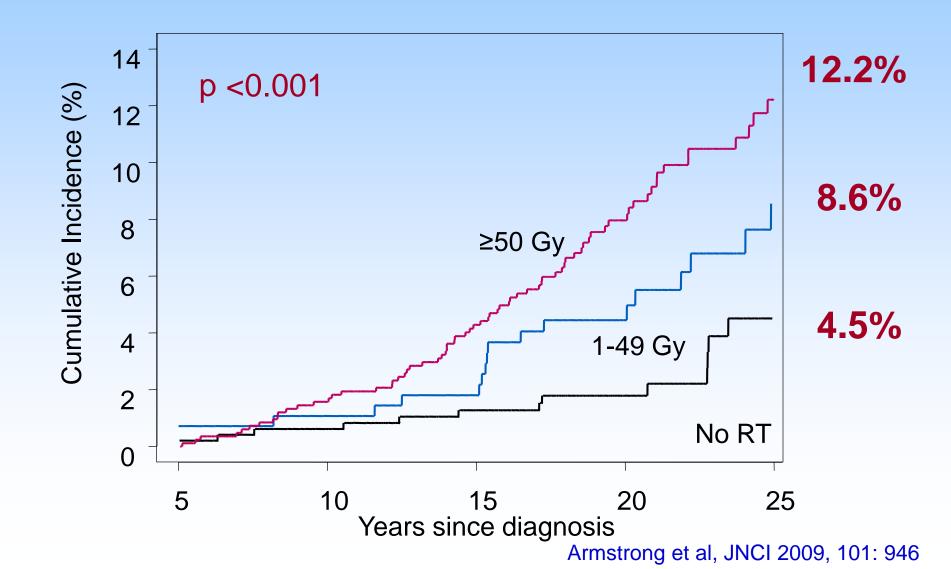
	Survivors	Sibs	Odds Ratio (95%CI)*					
	% (n=2,821)	%						
High School Grad.	91	99	3.7 (2.5-5.5)					
Married	33	69	4.3 (3.7-5.1)					
Employed	67	94	12.0 (9.1-15.8)					
Income >20,000	76	93	3.7 (2.9-4.8)					
Insured	88	91	1.1 (.8-1.4)					
5 yr survivors of CNS tumours diagnosed in 1970-1986								
* Adjusted for age, sex and intra	a-family correlation		Armstrong et al, JNCI 2009, 101: 946					

Health Impairment

	Survivors	Sibs	Odds Ratio (95%CI)*
	%	%	
General Health	53	17	22.5 (14.3-35.3)
Mental Health	21	14	1.4 (1.2-1.7)
Functional Status	38	3	25.9 (18.9-35.4)
T Unotional Otatus	00	0	20.9 (10.9-00.4)
Activity Level	19	0.6	39.5 (22.7-68.7)
Pain	10	1	7.6 (4.9-11.8)
Apviotu	0	1	
Anxiety	8	1	10.0 (6.2-16.2)

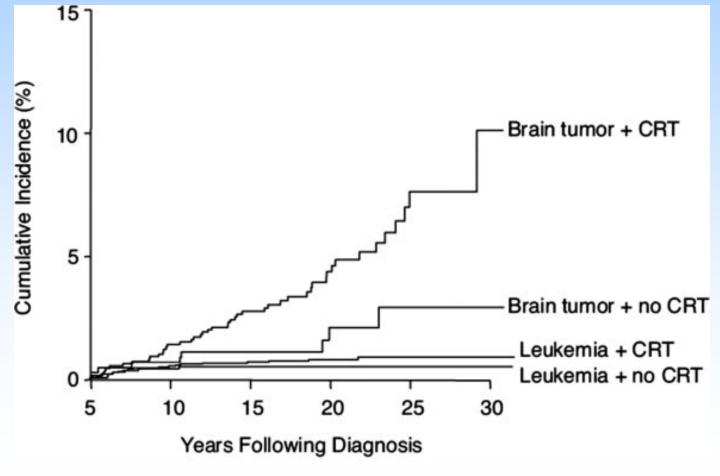
*Adjusted for age at interview, sex, ethnicity, education, income and health insurance

Armstrong et al, JNCI 2009, 101: 946


Chronic Health Conditions: New onset after 5 years

	Cumulative	Rate Ratio (95% CI)
	Incidence (%)	
Endocrine (any)	32.2	19.8 (14.5-27.1)
-GH deficiency	23.1	140.4 (51.3-384.1)
-Hypothyroidism	19.0	13.0 (9.2-18.3)
Musculoskeletal	7.3	13.8 (7.4-25.7)
Neurological (any)	72.4	5.6 (4.8-6.7)
-Seizure	32.9	15.1 (10.7-21.2)
-Balance	51.6	18.0 (13.4-24.1)
- Blindness	15.5	7.5 (4.1-13.5)

Armstrong et al, JNCI 2009, 101: 946


Second Neoplasms by RT dose

occurrence of late-occurring stroke among brain tumor survivors

Clinical sequelae

small v.: Mineralizing microangiopathy; impaired vasovasorum; possible brain necrosis **medium and large v.:** stenosis; aneurysm;vascular malformation

Morris et al, Neurology 2009, **73: 1906**

risk factor: radiation

very well known dose- and volume- related risks, especially in younger patients

risk factor: location

- Cerebral hemisphere high risk for cognition
- Midline high risk, especially third ventricle
- Posterior fossa lower risk but includes cognitive risks

risk factor: hydrocephalus

in some studies only

but

not all late effects are due to radiation see good review by Duffner EJPN 2010, 14, 106 1986-2010: treatment modification to reduce risk factors

- reduce volume and dose radiation
- ↑↑↑ use chemotherapy
 - adjuvant with reduced dose RT
 - chemotherapy-only protocols
 - high dose chemotherapy with transplant/stem cell support
- new radiation techniques
 - Hyperfractionation
 - conformal RT
 - PBT
- Aggressive surgery

after Duffner EJPN 2010, 14: 106

How should we measure quality of survival after childhood brain tumour?

Original article

Quality of survival assessment in European childhood brain tumour trials, for children aged 5 years and over

Jennifer A. Limond^{4,*}, Kim S. Bull^b, Gabriele Calaminus⁶, Colin R. Kennedy^{b,4}, Helen A. Spoudeas^{*}, Mathilde P. Chevignard^{5,9}, on behalf of the Brain Tumour Quality of Survival Group, International Society of Paediatric Oncology (Europe) (SIOP-E)

- 1. Background
 - a. Survivorship after childhood brain tumour
 - b. Terminology and conceptual framework
- 2. Developing an Agreed Protocol
- 3. Domains and Measures
 - a. Direct Assessment: 'Core Plus'
 - Table of Core and Supplementary ('Plus') Domains for Direct Assessment
 - b. Indirect Assessment
- 3. Measurement of Endocrine Outcomes
- 4. Individuals with Sensory Impairments
- 5. Implementing an agreed protocol in European trials

Limond et al, *EJPN*, 19: 202-210, 2015

Cerebellar tumours as an example

1. chemotherapy: the low toxicity alternative?

chemotherapy

PNET3 outcome study for medulloblastoma

35 Gy CSI 20 Gy + post fossa boost

VCR, cyclo, carboplat and etoposide then CSI + post fossa boost

3 year survival 78.7 vs 64.2 % (randomised patients)

Outcomes :

PNET

neurological function

- health status (HUI3)

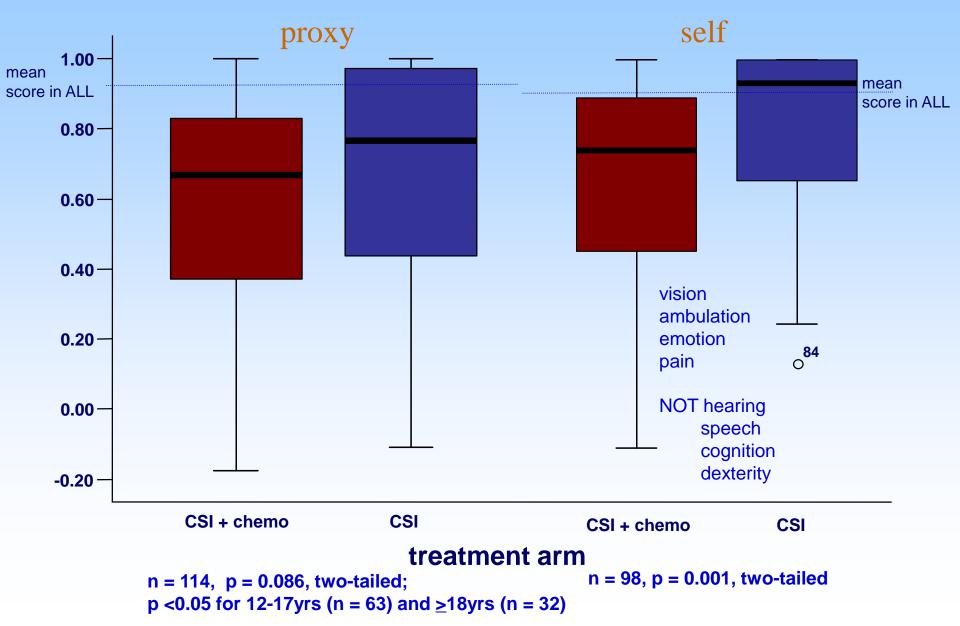
educational provision

- behaviour (SDQ)
- quality of life (PedsQL, CHQ-PF28)

A UK CCL group study Funded by The Brain Tumour Charity

characteristics of 127 ascertained children

(73% of all eligible UK children)


	CSI + chemo n=60	CSI n=67
age at diagnosis (yrs) mean (SD)	9 (4)	8 (3)
range	3 – 18	3 – 15
years from diagnosis mean (SD)	7 (2)	7 (2)
range	3 – 12	3 – 11
age at assessment (yrs) mean (SD)	16 (4)	16 (4)
range	8 – 24	7 – 24
male to female (%)	63 to 37	67 to 33
peri-operative complications (%)	58%	38%

functional neurological outcome (%)

	CSI + chemo	CSI
info from doctor/nurse (n=124)		
abnormal motor exam	53	44
bulbar problems	0	3
visual impairment	29	21
hearing impairment	12	6
anticonvulsant rx ever	12	9
info from parent/self (n=119)		
restriction of physical activity	71**	42**
problem with appearance	80	77

** p = 0.002

HUI3 overall utility score

'Primary' QoS outcome scores in PNET3

	CSI				CSI + CT				
Measure	No. of Patients	Median*	IQR*	No. of Patients	Median*	IQR*	Mean Difference	95% CI†	Pt
HUI									
Self report	48	0.93	0.65-1.00	38	0.71	0.48-0.89	-0.15	-0.27 to -0.03	.003
Proxy report	58	0.76	0.44-0.97	39	0.61	0.35-0.78	-0.09	-0.21 to 0.03	.075
SDQ total difficulties									
Self report	39	10	7.5-13.0	26	10.5	7.0-15.0	1.74	-1.05 to 4.54	.358
Proxy report	46	11	7.0-15.0	27	14.0	10.5-21.5	3.84	0.55 to 7.13	.023
PedsQL									
Self report	46	78.3	69.6-87.0	27	73.9	66.8-81.0	-3.5	-9.1 to 2.1	.18
Proxy report	46	74.0	64.6-88.5	27	67.7	57.8-79.7	-6.5	-13.2 to 0.2	.052
CHQ-PF28 proxy report									\leq
Physical	46	48.6	37.2-55.0	25	32.0	16.7-52.0	-10.2	-18.6 to -1.9	.028
Psychosocial	46	52.1	43.8-56.6	25	45.1	34.9-54.5	-6.4	-12.8 to -0.02	.097
QLQ-C30 Global Health Status	14	83.3	75.0-100	14	83.3	75.0-91.7	-2.38	-14.9 to 10.2	.64
BN-20 motor dysfunction	14	100	66.7-100	14	66.7	44.4-88.9	-21.43	-41.6 to -1.2	.024

effect of addition of chemotherapy to CSI

The addition of chemotherapy to craniospinal irradiation appears to have a negative impact on various aspects of quality of survival which seems to continue into adulthood

- CSI + chemo children had lower overall health status (HUI)
- CSI + chemo children were significantly more restricted from participating in physical activities which seems to have an impact on social functioning (MES, HUI, CHQ, QLQ-C30, BN20).
- CSI + chemo children received significantly more help at school (MES, HUI)
- CSI + chemo children exhibit significantly more total difficulties with emotion and behaviour (SDQ)

Chemotherapy may sensitize the child to the unwanted effects of surgery and/or irradiation

Bull et al, JCO 2007, 25: 4239-4245

cerebellar tumours as an example (contd)

2. Variations on radiotherapy Sterotactic Intensity modulated Proton beam Hyperfractionated

The HIT-PNET4 RCT

HFRT > effect on rapidly dividing cells 'early reacting' cells of the tumour and < effect on slower dividing normal CNS cells.

PNET4 experimental treatment arms designed to deliver higher biologically effective dose to tumour and be 'iso-toxic' for CNS

Standard radiotherapy (STRT) : RT x 1 per day + chemo Vs Hyperfractionated radiotherapy (HFRT): RT x 2 per day + chemo BUT >5 yr EFS is 77<u>+</u>2 % with no difference between treatment arms. If no difference in EFS... what about QoS?

PNET 4 cross-sectional outcome study

Aim

To identify differences in QoS between the two treatment arms in PNET4.

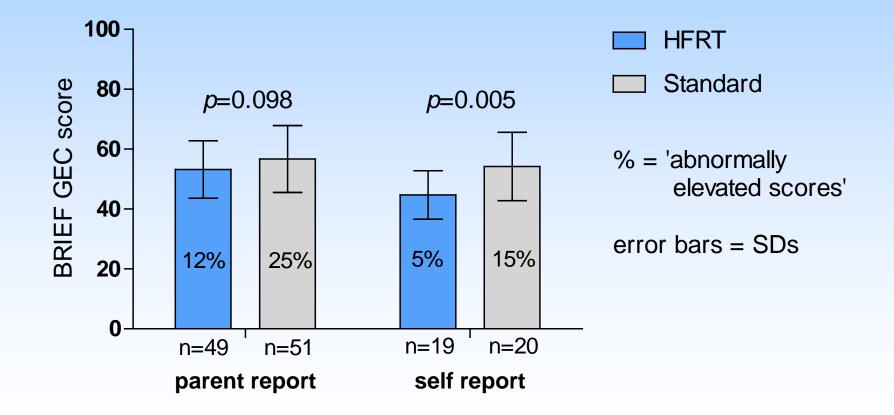
Participants

Event-free survivors in F, DE, I, NDL, ESP, SWE, & UK who had been enrolled in PNET4 between Jan 2003 & Nov 2006.

Methods

- Growth and medication use recorded prospectively.
- Self- and parent- report responses to questionnaire booklets administered between Aug 2010 and May 2011:
- Principal outcomes: executive function, health status, behavioural difficulties and quality of life

Demographic characteristics of participating survivors: 151 of 244 (62%) eligible survivors provided information


	HFRT	Standard
	n=74	n=77
% Female	31	40
Mean age in years (range)	16 (7-30)	16 (9-30)
Mean age in years at diagnosis (range)	10 (3-21)	10 (3-20)
Mean time in years from diagnosis (range)	6 (4-10)	6 (4-10)

The two groups were also similar with respect to:

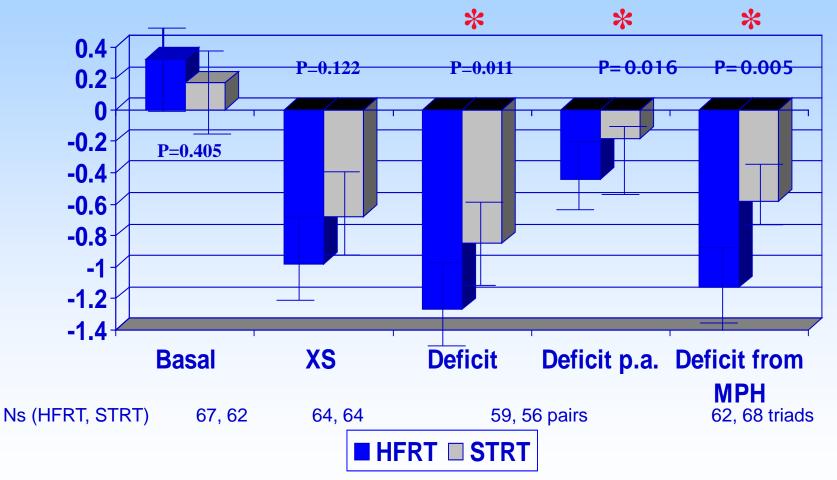
- post-surgical status and complications,
- baseline height and weight,
- birth weight and mid-parental target height
- peri-operative complications

23

Executive Function (BRIEF) in all participants by parent report if <18 yrs or self report if \geq 18 yrs

24 Overall % of 'abnormally elevated scores: HFRT Vs STRT = 7/68 (10%) Vs 16/71 (23%)

Multiple regression model


Executive functioning (combined z-scores, N=130)

1.Effect of treatment arm after adjusting for sex, age at diagnosis, time since diagnosis, post-op complications.

Group Z sc	mean ores	Mean difference (95% CI)	Р	Adjusted mean difference (95% CI)	Р
HFRT n = 68	STRT n = 71				
-0.25	0.24	0.48 (0.2, 0.8)	0.004	0.42 (0.1, 0.8)	0.017

Growth (UK norm z-scores)

Mean (95% CI) height and height deficit from baseline

- All survivors short and thin vs UK norms
- No difference in weight/BMI between arms

PNET 4 cross-sectional outcome study: Principal QoS outcomes by treatment, stratified by age

		<	8.0 years at di	agnosis		>8.0 years at diagnosis				
Mean z-scores (SDs)	n1, n2	HFRT	STRT	Inter-group mean difference (95% CI)	Р	n1, n2	HFRT	STRT	Inter-group mean difference (95% CI)	Р
Executive function (BRIEF)	29, 24	-0.45 (0.83)	0.39 (1.11)	-0.84 (0.31 to 1.38)	0.003	39, 47	-0.09 (0.88)	0.16 (1.03)	-0.25 (-0.17 to 0.67)	0.24
Health status (HUI3)	26, 21	0.14 (0.76)	-0.09 (1.13)	0.23 (-0.32 to 0.79)	0.41	29, 38	0.10 (0.94)	-0.17 (1.22)	0.27 (-0.28 to 0.82)	0.33
Behavioural difficulties (SDQ)	31, 23	-0.18 (0.75)	0.30 (1.17)	-0.48 (-0.09 to 1.04)	0.10	19, 27	-0.02 (1.09)	-0.05 (1.03)	0.03 (-0.61 to 0.67)	0.93
Quality of Life (PedsQL & QLQ-C30)	20, 17	0.18 (1.04)	-0.06 (1.01)	0.23 (-0.45 to 0.92)	0.50	42, 49	0.02 (1.01)	-0.07 (0.98)	0.10 (-0.32 to 0.51)	0.64
Height decrement from diagnosis	23, 17	-1.62 (0.85)	-0.91 (0.84	-0.71 (-1.26 to -0.17)	0.012	36, 39	-1.05 (0.88)	-0.82 (0.89)	-0.23 (-0.64 to 0.18)	0.26
Weight decrement from diagnosis	24, 19	-0.23 (1.13)	0.02 (1.04)	-0.25 (-0.92 to 0.43)	0.47	35, 41	-0.53 (0.93)	-0.31 (0.84)	-0.21 (-0.62 to 0.19)	0.30

Kennedy et al, Int J Rad Oncol Biol Phys 88: 292-300. DOI:10.1016/j.ijrobp.2013.09.0463

Psychometric assessments in HIT-PNET4 RCT

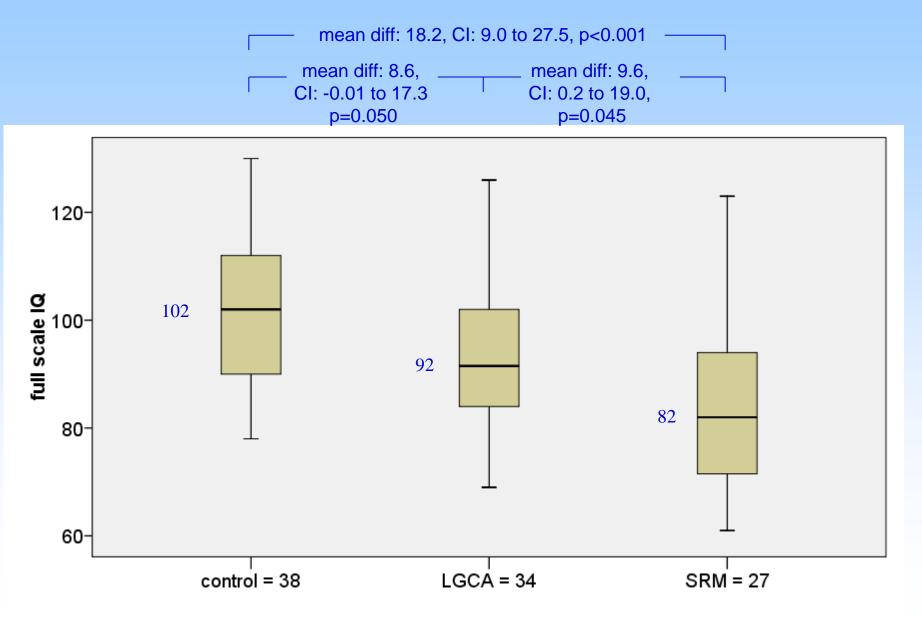
- Separate national efforts to assess in France, Germany, Italy, Sweden combined into single dataset of z-scores
- Mean FSIQ for the whole group around 1SD below norms: consistent with the literature
- No significant difference between treatment arms for the whole group
- However results suggest an advantage of HFRT for subsequent cognitive functioning in those aged <8y at diagnosis, significant for Verbal IQ
- Consistent with better executive functioning reported by Kennedy (2014) in same age range

Chevignard et al, 2015, submitted.

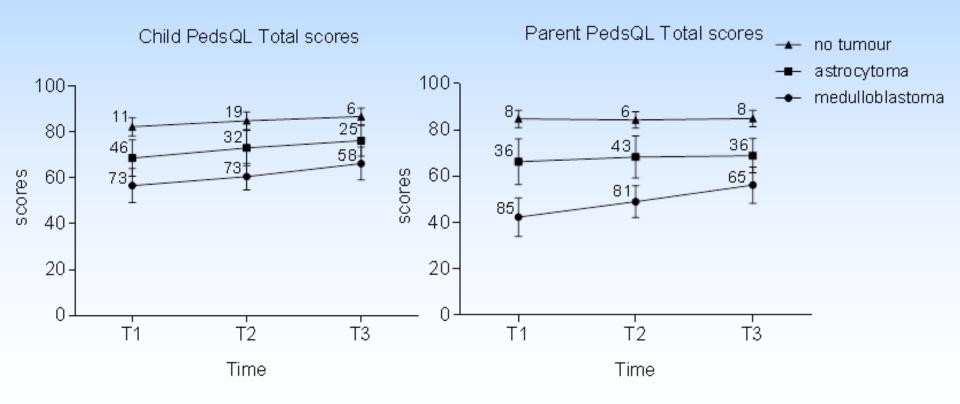
cerebellar tumours as an example (contd)

3. Factors other than adjuvant anti-tumour treatment

'In depth' study


Patients

- Children aged 8 to 14 years diagnosed within last three years at 11 CCLG centres in UK
- Comparison group recruited from same schools and year groups as brain tumour participants


Methods

- Child and parent questionnaires:,
 - Health Utilities Index
 - Behavior rating inventory of executive function (BRIEF)
 - Strengths and Difficulties Questionnaire (SDQ),
 - Attributional Style Questionnaire (ASQ),
 - General Health Questionnaire (GHQ-12),
 - Pediatric Quality of Life Inventory (PedsQL).
 - Psychometric assessment of child: WISC-IV

In-depth study WISC-IV scores by group

'In depth' study: Quality of Life scores over 24 month followup period in 90 old children aged 8-14 years. ('Complete cases' only.)

'In depth' study of 8-14 year old children with cerebellar tumours

Table 4. Factors at study entry predicting quality of life: child-report 24 months later				Table 5. Factors at study entry p months later	redicting quo	lity of life: parent-re	port 24
	В	95% CI for B	Р		В	95% CI for B	Р
Final model $n = 81, R^2 = 0.534, R_{adj}^2 = 0.516, P < .001$ Child's age (years) $-0.136 -0.263$ to -0.009 .036				Final model $N = 81$, $R^2 = 0.644$, Emotion z score	$R_{adj}^2 = 0.631$	P<.001	
Child's age (years)	-0.136	-0.263 to -0.009	.036	Emotion z score	-0.111	-0.196 to -0.026	.011
Emotion z score	-0.100	-0.178 to -0.022	.013	Motor and sensory z score	-0.019	-0.032 to -0.006	.004
Cognition z score	-0.037	-0.053 to -0.020	<.001	Cognition z score	-0.043	-0.063 to -0.023	<.001


Conclusion

Early screening of cognitive and emotional function in this age group would identify those at risk of poor HRQoL.

Bull et al, Neuro-Oncology Practice, 2014, 1:114-122 doi:10.1093/nop/npu016

cerebellar tumours as an example (contd)

4. neurosurgery: the forgotten factor?

The Cerebellum and Cognition

EDITED BY

JEREMY D. SCHMAHMANN

International Review of Neurobiology, Volume 41

the cerebellar cognitive affective syndrome

•disturbance of executive function including poor planning

•visual-spatial disorganization and impaired visual-spatial memory

 personality change with blunting of affect or disinhibited and inappropriate behaviour

•difficulty with interpreting and producing logical sequences

•language difficulties including dysprosodia, mild anomia, and agrammatism

		Medullobla	stoma n=37	Cerebellar ast	rocytoma n=35
		Pre resection	Post resection	Pre resection	Post resection
		n (%)	n (%)	n (%)	n (%)
	Severe hydrocephalus	17 (46)	4 (11)	12 (34)	4 (11)
	Visual impairment	7 (19)	9 (24)	6 (17)	4 (11)
	Speech impairment	3 (8)	11 (30)	1 (3)	6 (17)
Clinical neurologic	Upper limb ataxia	19 (51)	19 (51)	12 (34)	9 (26)
features	Truncal ataxia	23 (62)	24 (65)	7 (20)	8 (23)
before and	Limb weakness	1 (3)	12 (32)	2 (6)	5 (14)
after	Balance impairment	24 (65)	27 (73)	17 (49)	9 (26)
tumour resection	Walking impairment	15 (41)	18 (49)	11 (31)	10 (29)
	Seizures	0	0	2 (6)	0
	Cerebellar mutism	0	12 (32)	0	4 (11)
	CNS/other infection	0	8 (22)	0	5 (14)
	No adverse features	5 (14)	4 (11)	7 (20)	12 (34)
	Mean no. of clinical features (SD)	4.1 (2.8)	5.7 (4.1)	2.7 (2.2)	2.9 (3.2)

Pervasive themes in medium and long term quality of survival after childhood brain tumours

- morbidity is high
 - -- cognition
 - health state (multi-dimensional)
 - education, employment
 - behaviour
 - quality of life
 - irradiation can reduce QoS but irradiation alone does not account for most problems and radiobiology is not clear.
 - also tumour, surgery, chemotherapy, psychosocial factors.

 On-line tools beginning to play a role in assessing QoS: this is a promising method of using patient reported outcomes and may be useful for care of individual patient

