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Control of mechanical systems with uncertain set-valued friction†
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Summary. We present a control architecture for the set-point stabilization of motion systems subject to set-valued friction, including a
velocity-weakening (Stribeck) effect. The proposed controller consists of a switching PID term and a term that robustly compensates for
the Stribeck effect. It is shown that the controller asymptotically stabilizes the set-point, and that this controller is robust for unknown
static friction, and an uncertain contribution of the Stribeck effect.

Introduction
It is well known that friction is a performance limiting factor in high-precision positioning systems. Many different
approaches have been presented in literature that deal with the effects of friction in order to achieve high precision
positioning. For instance, friction compensation techniques use a friction model in the controller, but modeling errors
are inevitable such that positioning accuracy is compromised due to over- or undercompensation of the friction, see e.g.,
[1, 2]. Non-compensation-based techniques, such as PID control for systems subject to friction with the Stribeck effect
may lead to limit cycling, whereas impulsive control may lead to the excitation of high-frequency system dynamics. In
this work, we present a control technique that guarantees set-point stabilization of a motion system subject to static friction
and the velocity-dependent Stribeck effect. The proposed control architecture will be shown to be robust for unknown
static friction and an uncertain Stribeck effect, and does not excite high-frequency system dynamics.

Controller design
Consider a controlled sliding inertia m subject to a friction characteristic that consists of unknown static friction (Fs) and
an uncertain velocity-dependent friction contribution f(v), as visualized in Figure 1. The system dynamics are described
by the following differential inclusion:

ẋ(t) = v(t),

v̇(t) ∈ (−FsSign(v) + f(v)− u(t)) /m,
(1)

where x is the position, v the velocity and Sign represents the set-valued sign function, that is Sign(y) = sign(y) for
y 6= 0, and Sign(y) ∈ [−1, 1] for y = 0. The smooth part of the friction f(v) is considered to be potentially uncertain.
The only assumption adopted for f(v) is that it satisfies the inequality

vf(v) ≤ −|v|F̃
(
e−δ|v| − 1

)
, (2)

for all v ∈ R, as visualized by the dashed line in the right subplot of Figure 1. Herein, F̃ ∈ R>0 is chosen such that
the magnitude of the velocity-dependent friction part is bounded by F̃ . The parameter δ ∈ R>0 embeds a velocity-
dependency in this bound, while still allowing to characterize the Stribeck (velocity-weakening) effect commonly present
in frictional contact. The controller u consists of a switched PID term, and a term that robustly compensates for velocity-
dependent and uncertain frictional effects (including the Stribeck effect), using the bound (2), such that the set-point x = 0
is stabilized. Integrator action plays an important role, as it is required to compensate for the uncertain static friction such
that the system can escape the stick phase. The switching dynamic control law is given by

ξ̇ =

{
|x|, if t < t1 ∨

(
t ≥ t1 ∧ ξ < ξ̄

)
,

0, if t ≥ t1 ∧ ξ = ξ̄,
(3a)

u = kpx+ kdv − kiξ (sign(v)− (1− |sign(v)|) sign(x))

switching PID term

−F̃
(
e−δ|v| − 1

)
sign(v)

vel. dependent compensation

, (3b)

where

ξ̄ = ξ(t1) + (kp|x(t1)|) /ki, (3c)

t1 := max {t ∈ R≥0 | v(s) = 0 ∧ ẋ2(s) = 0, ∀s ∈ [0, t]} (3d)

with initial conditions |x(0)| ≤ Fs/ki, v(0) = 0 (i.e., the system is in the stick phase, see [2]), and ξ(0) = 0. The
proportional, derivative, and integral control gains of the PID term in (3b) are denoted by kp, kd, ki ∈ R>0, respectively
The integrator dynamics (3a) results in a saturated integrator state ξ ∈ R≥0, which cannot exceed a maximum value
defined by ξ̄. The purpose of this bound is that the integral control force can only compensate for no more than the
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Figure 1: The friction characteristic (left) can be decomposed into static
friction (center) and a velocity-dependent curve (right). The dashed line
indicates the bound used in the controller.
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Figure 2: Simulated response of the closed-
loop system for two values of the integrator
gain ki.

static friction. Its value is determined at the first stick-slip transition of the system, at t = t1, see (3d). Moreover, in
this particular design of the integrator the absolute value of the position error is integrated over time. The switching term
sign(v)− (1− |sign(v)|) sign(x) in (3b) is then employed to determine the sign of the integrator control force. If v 6= 0,
the sign of the velocity v determines the sign of the integrator control force, whereas the sign of the position error x
determines the sign of the force in case v = 0. In this way, the contribution of integrator action is still present when the
system is in the stick phase (v = 0). If overshooting the set-point occurs, a conventional integrator has to change sign
by gradually depleting and refilling its buffer in order to provide integral action in the correct direction. This process is
slow, and leads to large settling times. The proposed controller, instead, leads to considerably faster convergence when
overshoot of the set-point occurs, by using switching controls. Also note that the controller robustly stabilizes the set-point
for any velocity-dependent friction contributions that lie inside the grey area in Figure 1.
Closed-loop stability of the system is analyzed as follows. First, it is shown that the (saturated) integrator state ξ, satisfies
ξ ≤ ξ̄ = Fs/ki. This fact is then used to show that the set {(x, v, ξ) ∈ R×R×R≥0 ⊂ R3 | x = v = 0, 0 ≤ ξ ≤ Fs/ki}
is asymptotically stable, using a Lyapunov stability analysis and a LaSalle-type invariance argument.

Illustrative example
Consider the closed-loop system (1), (3), with parameter values m = 1 kg, kp = 18, kd = 1, and either ki = 20 or
ki = 30. The true friction characteristic is given by the solid curve visualized in Figure 1, with a pronounced Stribeck
effect. The bound on the Stribeck curve, with δ = 25 and F̃ = 0.55 N, satisfies in the particular bound as shown by
the dashed line in Figure 1. A numerical time-stepping routine is employed to numerically compute solutions of the
closed-loop system, with initial conditions x(0) = −0.05, v(0) = ξ(0) = 0. The response of the closed-loop system
is visualized in Figure 2. For ki = 20, the response converges to the set-point without overshoot, whereas for ki = 30,
the response overshoots the set-point. In contrast to approaching the set-point from one side, overshooting the set-point
results in velocity-reversals, and consequently in discontinuities in the control force, see Figure 3. These discontinuities
occur at velocity reversals only, and, due to the particular design of the integrator, the integrator control force does not
exceed the value of the static friction. Therefore, the integrator control force and static friction cancel each other such that
the remaining dynamics consist of merely a PD-controlled inertia. Hence, the discontinuity in the control force does not
result in motion of the system and will therefore not excite high-frequency system dynamics.

Conclusion
A controller for the set-point stabilization of motion systems subject to set-valued Stribeck friction is proposed. The
controller renders the set-point asymptotically stable, and it is robust for unknown static friction and an uncertain Stribeck
curve.
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Figure 3: Control force u for a simulation with ki = 20 (left) and ki = 30 (right).

References

[1] Armstrong-Hélouvry, B., Dupont, P., Canudas de Wit, C., "A survey of models, analysis tools and compensation methods for the control of machines
with friction", Automatica, vol. 30, no. 7, pp. 1083-1138, 1994.

[2] Putra, D., Nijmeijer, H., van de Wouw, N., "Analysis of undercompensation and overcompensation of friction in 1DOF mechanical systems",
Automatica, vol. 43, no. 8, pp. 1387-1394, 2007.


