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Summary.We study the problem of synchronization of networked Lagrange system with dynamic friction compensation. To obtain the 
accurate description of physical friction, Lugre friction model is introduced to the controlled system. The tracking control algorithm for 
uncertain parameters system are provided, which has the capability of adapting changes due to external disturbance and aging of 
material by learning from the tracking error. In addition, the proposed algorithm has a weak assumption on the value of control gain and 
is easy to be realized. Simulations are provided to show the effectiveness of the proposed tracking algorithm. 
 

Introduction 
 
In recent decades, synchronization control has attracted much attention from researchers. Various control strategies 
are proposed based on the Euler Lagrange approach and LaSalle’s invariance principle [1]. It is noted that the friction 
is not considered or simply expressed by means of a static model in most references. According to [2] and [3], static 
friction model neglects the deformation of the contact surface and is unable to explain the hysteretic behaviour, which 
may lead to tracking error in high precision control. Lugre model [2] is selected in this work because it does not only 
incorporate features of classical static friction model, but also has the capability to explain most friction behaviours. 
We propose the tracking algorithm by introducing dual-observer [4] to networked Lagrange system with uncertain 
parameters. By applying the proposed tracking algorithm, synchronization can be rapidly achieved in simulations. 
 

System equation and main results 
 
Suppose that the networked Lagrange mechanical system has one leader, i.e. agent 0  as an extra agent and N
followers, named as agent 1  to agent N . The topology of the information flow among followers can be represented 

by a graph. Consider the directed graph  ,   , where  1,2, , N  is the set of nodes and     is the 

set of edges. The edge  ,i j  , where ,i j , indicates that agent j  can obtain information from agent i . 

Similarly, define  ,   , where  0,1,2, , N  , being the set consisting the leader and all followers.

N N
ija    A  and  10 20 0, , , Ndiag b b bB   where  
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  By using Euler-Lagrange formalism, the dynamic model of N agents n-degree networked Lagrange system can be 
described as follows: 

      , 1, 2, , ,i i i i i i i i i Li i i N    M q q C q q q G q T τ ，     (2) 

where  1 2

T n
i i i inq q q q  is the vector of generalized coordinates of agent  0,1, ,i i N  , iq  and iq  

are the generalized velocity and generalized acceleration, respectively.   n n
i i

M q  is a positive definite inertia 

matrix.  , n n
i i i

C q q  is the Coriolis matrix related with body rotation.   n
i i G q   is the vector of gravitational 

force. Li T  1 2

T n
Li Li LinT T T   represents the vector of Lugre friction. n

i τ   is the vector of control 

input. Based on [5], the Lugre friction can be expressed by 0 1 2Lij ij ij ij ij ij ijT z z q       where 0 ij , 1ij , 2 ij  

and ijz  represent stiffness coefficient, damping coefficient, viscous coefficient and internal state parameter updated 

by  /ij ij ij ij ij ijz q z q g q     where ijg  is a nonlinear function with respect to ijq . It should be noted that 0 ij  

and 1ij  are also called dynamic friction parameters due to their relation with the internal state parameter ijz .  
  To design the tracking algorithm and guarantee the stability of the controlled system, we need the following 

assumptions:   has a spanning tree;   0trace B ; all agents have access to their own generalized coordinates and 

velocity; the leader has no access to any other agent and the leader is able to deliver 0q  and 0q to all other agents; if 

0ija  , jq  is supposed to be delivered to agent i  by agent j , and if 0 0ib  , 0q  is supposed to be delivered to 
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agent i  by the leader;  ij ijg q  is a known function. It can be proved that when the above assumptions hold, all 

followers will track the trajectory of the leader by applying the following adaptive tracking algorithm to system(2),  

   2
ˆ ˆ, , , , 1,2, , ,i i i i i i i Li i i i N   τ Y q q η η θ T K ξ    (3) 

where iY  is a known regression matrix with respect to system parameter, 0i  η q
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i j ij i j i ia b
    K q q q q , i i i ξ q η  and ˆ

LiT  is updated as follows: 

      0 0 1 1 2
ˆ ˆ ˆ ˆ ˆ ˆ , 1, 2, , .Li i i i i i i i idiag diag diag i N    T z σ q Ξ z σ q σ    

Adaptive laws of other parameters are listed as follows: 
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where       1 1 1 2 2 2/ , / , , /i i i i i i i in in indiag q g q q g q q g qΞ       . 

 
Example 

 
Consider a mechanical network including four two-link revolute manipulators whose dynamics equation is modeled 

in [6]. Let  1 0 1 1 0
TA ,  2 0 0 1 0

TA ,  3 0 0 0 1
TA ,  4 0 1 0 0

TA , 

 1 2 3 4A A A A A  and  1,1,0,0diagB . For suitably selected system parameters, the results of angle 

tracking and angular velocity tracking are presented in Figs.1 and 2. In comparison, results obtained by using 
common adaptive control strategy with the same common parameters are presented in Figs.3 and 4. 

 

 Fig.1 Angle tracking result Fig.2 Angular velocity tracking result 

 

 Fig.3 Angle tracking result Fig.4 Angular velocity tracking result 
 

Conclusions 
 

We present tracking algorithm (3) for the synchronization of networked Lagrange system with uncertain parameters. The 
proposed tracking algorithm achieves higher control accuracy by replacing the traditional static friction model by a dynamic 
friction model, i.e., the Lugre friction model, which is shown to be effective in the simulation. It should be noted that the algorithm 
can be proved to have a weak assumption on control parameters and is therefore convenient in practical application.  
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