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Hopf bifurcation in a delayed nonlinear Mathieu equation
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Summary. We investigate the occurrence of Hopf bifurcations in the nonlinear Mathieu equation with delayed self-feedback. We
include delay terms in the slow flow, extending previous work which replaced such terms by non-delayed terms. Our interest in this
equation comes from its application to the dynamics of the synchrotron particle accelerator.

Introduction

In a paper by Sah and Rand [1], Hopf bifurcations in autonomous nonlinear oscillators with delayed self-feedback were
studied using perturbation methods. It was shown that treating the slow flow as a DDE rather than an ODE, in general,
gives a better approximation for the Hopf curves. The critical time delay Tcr for a Hopf bifurcation was expressed as a
geometric series, giving a closed form expression for Tcr. In the present work, we apply the same procedure to a system
studied by Morrison and Rand [2], who omitted delay terms in the slow flow. We ask, can the approximation be improved
by including delay terms in the slow flow?

The delayed nonlinear Mathieu equation considered in this work has the following form:

ẍ+ (δ + ε α cos t)x+ ε γ x3 = ε β x(t− T ) (1)

Our interest in this equation comes from its application to the dynamics of the synchrotron particle accelerator. In this
machine, magnetic fields are used to make a particle beam travel around a nearly circular path. The nonuniformity of the
magnetic field leads to the appearance of the cos t term in the differential equation. As a particle in the beam traverses the
path, it runs into its own wake which is modeled as delayed self-feedback.

Analysis

The method of two variable expansion posits that the solution depends on two time variables, x(ξ, η), where ξ = t and
η = εt, such that at order ε0 the solution takes the form:

x0(ξ, η) = A(η) cos
ξ

2
+B(η) sin

ξ

2
(2)

where we have set δ = 1
4 + δ1ε + O(ε2). Carrying out the method, we end up with a delayed slow flow, which after

linearization about the origin (A,B) = (0, 0) yields [2]:

dA

dη
=
[
−α
2
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]
B − β Ad sin

T

2
− β Bd cos

T

2
(3)

dB
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2
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A+ β Ad cos

T

2
− β Bd sin

T

2
(4)

We set
A = a exp(λη), B = b exp(λη), Ad = a exp(λη − ελT ), Bd = b exp(λη − ελT ) (5)

where a and b are constants. This gives[
−λ− β sin T

2 exp(−ε λ T ) −β cos T2 exp(−ε λ T ) + δ1 − α
2

β cos T2 exp(−ε λ T )− δ1 − α
2 −λ− β sin T

2 exp(−ε λ T )
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a
b

]
=

[
0
0

]
(6)

For a nontrivial solution (a, b) we require the determinant to vanish:

λ2 + 2β sin
T

2
λ exp(−ε T λ)− 2β δ1 cos

T

2
exp(−ε T λ) + β2 exp(−2 ε Tλ) + δ21 −

α2

4
= 0 (7)

For a Hopf bifurcation [3, 4], we set λ = iω and use Euler’s formula exp(−iωεT ) = cosωεT − i sinωεT . Separating
real and imaginary parts we obtain
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T

2
sin ε T ω − 2δ1β cos

T

2
cos εTω − ω2 − α2

4
+ δ21 = 0 (8)
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2
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T

2
cos ε T ω = 0 (9)

The next task is to analytically solve the two characteristic Eqs. (8)-(9) for the pair (ω,T ). To this aim we use a perturbation
schema by setting

ωcr =

N∑
n=0

εn ωn = ω0 + ε ω1 + ε2 ω2 + . . . , Tcr =

N∑
n=0

εn Tn = T0 + ε T1 + ε2 T2 + . . . (10)

Inserting Eq. (10) in Eqs. (8)-(9), Taylor expanding the trig functions with respect to the small parameter ε << 1, and
equating terms of equal order of ε, we obtain the values of ωn and Tn which are given as follows:

ω0 =

√
(2β − α+ 2 δ1) (2β + α+ 2 δ1)

2
, ω1 = 0, ω2 = −δ1 α

2 β T 2
0

8ω0
, ω3 =

δ1 α
2 β (β + δ1)T

2
0

2ω0
,

T0 = 2π, T1 = −2 (β + δ1)T0, T2 = 4 (β + δ1)
2 T0, T3 = 8 (β + δ1)

3 T0 −
(β − 2 δ1)

(
(β − δ1)

2 − ω2
0

)
3

T 3
0

Note that the value of T0 corresponds to the critical time delay obtained when the delayed variablesAd andBd in Eqs. (3)-
(4) are replaced by A and B resulting in an ODE slow flow, see [2].

Figure 1: LEFT: Results of numerical integration of Eq.(1), from [2]. Shaded region is stable and unshaded region is unstable. The
curved boundaries are saddle-node bifurcations, and are not dealt with in this paper. The straight portion of the boundary is a Hopf
bifurcation and is to be compared to the perturbation results presented on the RIGHT side of this figure.
RIGHT: The solid line represents the Hopf curve obtained in [2] by replacing the delayed variables Ad and Bd in Eqs. (3)-(4) by A and
B resulting in an ODE slow flow. The dashed line is the improved approximation obtained in this paper.

Conclusions

In this work we have analytically approximated Hopf bifurcation curves for the delayed nonlinear Mathieu equation (1).
Fig. 1 shows a comparison between the results of (a) numerical integration, (b) the analytical critical time delay obtained
in [2], Tcr = 2π, and (c) the one obtained using the procedure in this work, Tcr =

∑N
n=0 ε

n Tn. Comparison shows that
keeping the delayed variables in the slow flow improves the analytical approximation.

Acknowledgement

This work was partially supported by NSF Grant PHY-1549132.

References

[1] Sah S., Rand R. (2016) Delay Terms in the Slow Flow. Journal of Applied Nonlinear Dynamics 5(4):473-486.
[2] Morrison, T.M. and Rand, R.H. (2007) 2:1 Resonance in the delayed nonlinear Mathieu equation. Nonlinear Dynamics, 50: 341-352.
[3] Rand, R.H. (2012), Lecture notes in nonlinear vibrations published on-line by the Internet-First University Press website, http:// ecom-

mons.library.cornell.edu/handle/1813/28989
[4] Strogatz, S. H. (1994), Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Addison-Wesley,

Reading, Massachusetts.


