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Summary. Curved beams subjected to transverse force may exhibit latching phenomena, namely remain in their buckled configuration
under zero force. By satisfying the conditions which grant latching, it is possible to shift a bistable beam to its secondstable state,
thereby holding (“trapping”) it under zero load. This procedure is applicable for beams which their second stable branch is either
accessible or inaccessible under quasi-static loading. However, in order to induce a snap-back reaction in latched trapped beams, an
actuation at an opposite force is required. As a result, two independent electrodes are needed for actuation under electrostatically load.
In this study, we present that a snap-back can be induced dynamically, reducing the two electrode system to one. The analysis is based
on a reduced order (RO) model resulting from the Galerkin decomposition with buckling modes of a straight beam as base functions.
The result of the said analysis grants a necessary condition, which the beam must apply in order to induce a dynamic release response.

Introduction

For a certain range of geometrical parameters, a curved beammay exhibit three limit points, i.e. snap-through (S), release
(R) and pull-in (PI), making the beam bistable [1]. In [2] it was found, that a bistable beam can have a latching point,
which resides at zero load. Such a configuration presents a singular scenario, where a beam can snap-through to its second
stable equilibrium and remain there, unable to return to itsinitial position under quasi-static load. Such a scenario dictates,
that in order to establish a two way switching, a two electrode system needs to be designed. However, as was shown, it
is possible to release the beam by pre-loading it to a certainlocation, causing it to gain strain energy in the process. By
releasing the beam from its new location, the beam can be released dynamically to its initial equilibrium. In this study,
we take the said observation and analyze the dynamic releaseresponse. It is shown, that depending on the damping and
initial condition (the “new” location on the second stable branch), the beam can either converge to its initial equilibrium
or back to its latching point [3].

Model

The geometry of the beam is characterized by its initial elevation ĥ0 (defined as the distance between the mid-point of
the beam and the line connecting the clamped ends), thickness d̂, width b, and lengthL. The beam resides at a distance
g0 (also known as the gap) from an actuating electrode, providing a distributed electrostatic load, as seen in Fig. 1(a).
Assuming a symmetric beam response, we employ a single degree of freedom (DOF) reduced order (RO) model, obtained
using the Galerkin decomposition, to describe the beam dynamics. The non-dimensional equation of motion is given by
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with initial conditionsq0 = h0, q̇0 = 0. h0, d andβ are the beam non-dimensional initial elevation, thicknessand
voltage parameter, respectively, normalized against the gap. ξ andωn are the linearized non-dimensional damping ratio
and natural frequency, respectively. Note, that for a single mode representation, the normalized location of the beam is
bounded by−1 ≤ q ≤ h0 (see [3] for the full development).
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Figure 1: (a) Illustration of an initially curved beam underelectrostatic actuation. (b) Predicted static equilibrium, solved from the
static counterpart of Eq. (1)) for a beam with non dimensional thickness and initial elevation ofd = 0.1 andh = 0.3, respectively.
Arrows represent beam movement on the equilibrium path and response upon reaching the snap-through and pull-in voltages, presented
asβS andβPI , respectively. Since the beam has a negative release voltage, i.e. βR < 0, a latching point (L) exists. Dashed grey
line representsβ = 0 (c) Calculated responses of the beam from different initiallocations, assuming a quality factor ofQ = 10, with
q0 = −0.31, q0 = −0.35 andq0 = −0.31 in black, green and red, respectively. Dashed grey line representsq = 0.
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Figure 2: (a) Actuation map pertaining to the configuration presented in Fig. 1(b), signifying the two different possible outcomes
depending on the existing damping (Q), and the the initial condition given to the beam. The white region to the right of thenecessary
condition (the blue line) represents the conditions for which the beam returns to its latching point; the black regions represents the
conditions for which the beam is dynamically released to itsinitial stable state. The white regions to the left of the condition represent
bouncing. The map is bounded between the latching pointqL = −0.2457 and pull-in pointqPI = −0.6898. (b) Limit point map in
dashed red lines, showing the pull-in (PI) and release (R) locations ford = 0.1, superimposed against the latching (L) location in
solid green. The blue line represent the necessary condition for dynamic release (DR), stating that every point in the gray area beneath
it satisfies the condition.

Dynamic release

A beam which adheres to both bistability and latching conditions is given in Fig. 1(b), showing all three limit points
(S, R, PI) and a latching point (L), caused by the presence of a negative release voltage. To ascertain the different
responses inherent in the beam, Eq. (1) was taken withβ = 0 for a specific damping (stated by theQ-factor) and various
initial locationsq0. In doing so, we assume that the beam has reached a specific location on its equilibrium curve by
slowly preloading it. The calculation effectively begins when the actuated voltage drops to zero. Fig. 1(c) describes
three possible scenarios, caused from preloading to three different locations, showing two possible outcomes. The beam
can either converge back toqL (the black response), converge to its initial locationh0 (the green response), or preform
a trajectory around the initial location, only to return toqL (i.e. “bouncing” as the red response). At this point, it is
of importance to observe, that by taking the load to zero, theresults are relevant for all loading types. However, in
the presence of a nonlinear loading such as electrostatic load, a single difference is present. The difference lies in the
limitation of the initial locationq0, presented by the pull-in pointqPL, bounding the range of possible initial locations,
defined between the latching and the pull-in points, i.e.qPI ≤ q0 ≤ qL.

Necessary condition
To see the overall behavior of the phenomenon, Eq. (1) was solved again forβ = 0, by including the entire range possible
under electrostatic load. In addition, the effect of the surrounding damping was taken into account for each initial location,
thereby creating a map showing the two distinct possibilities. The calculations were done using the Runge-Kutta Fehlberg
method in steps of∆Q = 0.25 and∆q0 = −0.00025 for the damping and the initial location respectively, while the initial
velocity was determined aṡq0 = 0. The result is given in Fig. 2(a) showing that a dynamic release is not guaranteed, and
depends heavily on the damping, as was presented for the caseof dynamic trapping [3]. Closer observation in Fig. 2(a)
revels that a boundary, marking where a release can potentially occur. By taking Eq. (1), substitutingβ = 0 & ξ = 0,
and by demanding that its phase plane response trajectory will crossq = 0 twice, a necessary condition can be extracted.
Such a condition is granted in in Fig. 2(a) forh0 = 0.3 andd = 0.1, completing the map and in Fig. 2(b) ford = 0.1,
stating that the area beneath the black line guaranties thatsuch a trajectory takes place. However, since the conditiondoes
not take into account the effect of damping, the condition isonly a necessary one. With respect to electrostatic load, since
the condition is upper bounded byqPL, the area beneath the condition is limited by the pull-in line, thereby creating a
closed area.

Conclusions

To conclude, a dynamic release of a latched curved beam from its latching point back to its initial location is possible,
granted that the correct damping is present. The reason for the phenomenon lies in the dissipation rate of the strain
energy, accumulated during the preloading of the beam, thereby creating two different outcomes. However, formulation
of a necessary condition was carried out, showing that underthe correct geometric parameters and initial locations, a
dynamic release can potentially ensue.
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