ENOC 2017, June 25-30, 2017, Budapest, Hungary

Dynamic release condition for latched curved micro beams

Lior Medina’, Rivka Gilat* and Slava Krylo¥
* Faculty of Engineering, School of Mechanical Engineering, Tel-Aviv University, Ramat Aviv,
6997801, Israel
** Department of Civil Engineering, Faculty of Engineering, Ariel University, Ariel 40700, Israel

Summary. Curved beams subjected to transverse force may exhibfiitatphenomena, namely remain in their buckled configunatio
under zero force. By satisfying the conditions which gratthing, it is possible to shift a bistable beam to its secstatile state,
thereby holding (“trapping”) it under zero load. This prdoee is applicable for beams which their second stable brémeither
accessible or inaccessible under quasi-static loadingveMer, in order to induce a snap-back reaction in latchguprd beams, an
actuation at an opposite force is required. As a result, helependent electrodes are needed for actuation underoskatically load.

In this study, we present that a snap-back can be inducedrdgabl, reducing the two electrode system to one. The aiglg based
on a reduced order (RO) model resulting from the Galerkirodgmsition with buckling modes of a straight beam as basetifums.
The result of the said analysis grants a hecessary congdititich the beam must apply in order to induce a dynamic releasponse.

I ntroduction

For a certain range of geometrical parameters, a curved beanexhibit three limit points, i.e. snap-through (S), asle

(R) and pull-in (PI), making the beam bistable [1]. In [2] iasvfound, that a bistable beam can have a latching point,
which resides at zero load. Such a configuration presentgalar scenario, where a beam can snap-through to its second
stable equilibrium and remain there, unable to return timit&l position under quasi-static load. Such a scenantates,

that in order to establish a two way switching, a two eleatregstem needs to be designed. However, as was shown, it
is possible to release the beam by pre-loading it to a celdaation, causing it to gain strain energy in the process. By
releasing the beam from its new location, the beam can basetedynamically to its initial equilibrium. In this study,
we take the said observation and analyze the dynamic releagense. It is shown, that depending on the damping and
initial condition (the “new” location on the second stabtarich), the beam can either converge to its initial equilior

or back to its latching point [3].

M odel

The geometry of the beam is characterized by its initial@iewn i, (defined as the distance between the mid-point of
the beam and the line connecting the clamped ends), thiskhesidth b, and lengthL. The beam resides at a distance
go (also known as the gap) from an actuating electrode, progididistributed electrostatic load, as seen in Fig. 1(a).
Assuming a symmetric beam response, we employ a single@efiieedom (DOF) reduced order (RO) model, obtained
using the Galerkin decomposition, to describe the beamrdigga The non-dimensional equation of motion is given by
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with initial conditionsqy = hg, go = 0. hg, d and 8 are the beam non-dimensional initial elevation, thickreasd
voltage parameter, respectively, normalized against #pe gandw,, are the linearized non-dimensional damping ratio
and natural frequency, respectively. Note, that for a simgbde representation, the normalized location of the beam i
bounded by-1 < g < hq (see [3] for the full development).
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Figure 1: (a) lllustration of an initially curved beam undsectrostatic actuation. (b) Predicted static equilibrisolved from the
static counterpart of Eq. (1)) for a beam with non dimendidiniakness and initial elevation af = 0.1 andh = 0.3, respectively.
Arrows represent beam movement on the equilibrium path esygonse upon reaching the snap-through and pull-in vaiagesented
asfs andBpy, respectively. Since the beam has a negative release &pitag5r < 0, a latching point [) exists. Dashed grey
line representg = 0 (c) Calculated responses of the beam from different inlitigdtions, assuming a quality factor @f = 10, with
go = —0.31, g0 = —0.35 andgo = —0.31 in black, green and red, respectively. Dashed grey lineessmts; = 0.
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Figure 2: (a) Actuation map pertaining to the configuratioasgnted in Fig. 1(b), signifying the two different possilolutcomes
depending on the existing damping (Q), and the the initiabiton given to the beam. The white region to the right of tleeessary
condition (the blue line) represents the conditions foralihihe beam returns to its latching point; the black regi@msesents the
conditions for which the beam is dynamically released tmitsal stable state. The white regions to the left of thedition represent
bouncing. The map is bounded between the latching pint —0.2457 and pull-in pointgpr = —0.6898. (b) Limit point map in
dashed red lines, showing the pull-iR{) and releaseR) locations ford = 0.1, superimposed against the latchirfg) (ocation in
solid green. The blue line represent the necessary condaradynamic release/{ R), stating that every point in the gray area beneath
it satisfies the condition.

Dynamic release

A beam which adheres to both bistability and latching caadd is given in Fig. 1(b), showing all three limit points
(S, R, PI) and a latching pointl), caused by the presence of a negative release voltage. céaain the different
responses inherent in the beam, Eq. (1) was taken@vith0 for a specific damping (stated by thefactor) and various
initial locationsqy. In doing so, we assume that the beam has reached a specéimioon its equilibrium curve by
slowly preloading it. The calculation effectively beginfien the actuated voltage drops to zero. Fig. 1(c) describes
three possible scenarios, caused from preloading to thiffeeesht locations, showing two possible outcomes. Thetbea
can either converge back tg, (the black response), converge to its initial locatign(the green response), or preform
a trajectory around the initial location, only to returngp (i.e. “bouncing” as the red response). At this point, it is
of importance to observe, that by taking the load to zero,résalts are relevant for all loading types. However, in
the presence of a nonlinear loading such as electrostatit; & single difference is present. The difference lies én th
limitation of the initial locationgg, presented by the pull-in poigt-;,, bounding the range of possible initial locations,
defined between the latching and the pull-in points,d&. < ¢o < qr.

Necessary condition

To see the overall behavior of the phenomenon, Eq. (1) wasdalgain for3 = 0, by including the entire range possible
under electrostatic load. In addition, the effect of thecunding damping was taken into account for each initishtimn,
thereby creating a map showing the two distinct possieditiThe calculations were done using the Runge-Kutta Fehlbe
method in steps AAQ = 0.25 andAgqy = —0.00025 for the damping and the initial location respectively, wtthe initial
velocity was determined ag = 0. The result is given in Fig. 2(a) showing that a dynamic redgia not guaranteed, and
depends heavily on the damping, as was presented for thetdgaamic trapping [3]. Closer observation in Fig. 2(a)
revels that a boundary, marking where a release can pdtgmigzur. By taking Eqg. (1), substituting = 0 & & = 0,
and by demanding that its phase plane response trajectbigregsq = 0 twice, a necessary condition can be extracted.
Such a condition is granted in in Fig. 2(a) fog = 0.3 andd = 0.1, completing the map and in Fig. 2(b) fdr= 0.1,
stating that the area beneath the black line guarantiestichta trajectory takes place. However, since the conditb@s
not take into account the effect of damping, the conditiaonily a necessary one. With respect to electrostatic loadesi
the condition is upper bounded lgy:;, the area beneath the condition is limited by the pull-ie Jithereby creating a
closed area.

Conclusions

To conclude, a dynamic release of a latched curved beam tohatching point back to its initial location is possible,
granted that the correct damping is present. The reasorhéplienomenon lies in the dissipation rate of the strain
energy, accumulated during the preloading of the beamellyecreating two different outcomes. However, formulation
of a necessary condition was carried out, showing that utidecorrect geometric parameters and initial locations, a
dynamic release can potentially ensue.
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