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Abstract. In this paper, the aeroservoelastic (ASE) model is constructed in state-space to deal with the maneuver load of a high-

performance military aircraft. Then a model interpolation method is demonstrated for constructing linear parameter-varing (LPV) ASE 

model. Here the plant state-space matrices are assumed to depend on the Mach number. The controller design is based on robust 

H
 control theory. Finally, a series of numerical simulations is tested to verify the control effect. The studies demonstrate that 

the robust controller can realize maneuver load alleviation (MLA) in a wide range of Mach numbers. 

 
Introduction 

 

In the design process of modern aircraft, the load alleviation technique gains increasing attention over the past 

decades. The use of such technique can reduce additional structural loads due to both wind gusts and aircraft 

maneuvers to get decreased structure weight, extended structure life and enhanced flight performance. For high-

performance military aircrafts, only MLA is taken into consideration as ride comfort is not a concern. The MLA 

techniques have been studied since the 1970s [1-6]. For example, Anderson et al. synthesized the classic-control-

based longitudinal flight control system for an F-4E model to realize MLA [1]. Woods-Vedler et al. presented a 

systematic approach for designing rolling MLA control laws and demonstrated a rolling MLA system on the wind-

tunnel model of an Active Flexible Wing [3]. Gaulocher et al. used the model predictive control (MPC) to attenuate 

the structure response of sudden roll maneuvers [4]. Paletta designed a maneuver load control system for longitudinal 

maneuvers of a High Altitude Performance Demonstrator, and reduced the wing-root bending moment by 

approximately 20% while following the desired normal load factor law [5]. These controllers mostly could not deal 

with a wide range of flight conditions, such as Mach numbers and dynamic pressure. The control laws have to be 

updated during an actual flight. To realize an adaptive controller, an LPV model is essential for accuracy prediction of 

aeroelastic (AE) behavior in a wide range of flight conditions, and hence, a robust ASE controller can be synthesized. 

 

Aeroservoelastic Model 

 

The dynamic equation of the aeroelastic system of concern in generalized coordinates yields [9] 

 

   ( )s s s s c c c cq p q p       M ξ C ξ K ξ Q ξ M δ Q δ P
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 where p  is the nondimensional Laplace variable, sM , sC  and sK  are the generalized mass matrix, damping 

matrix and stiffness matrix, respectively. cM  is the coupling mass matrix between the control and structural modes, 

cδ  is the vector of the control surface deflections, sQ  and cQ  are the matrices of generalized unsteady 

aerodynamic-force coefficients associated with the structural and control modes, respectively, and P  represents the 

vector of gravitational forces. ξ  is the vector of generalized coordinates of the finite element model of the structure 

and takes the following form 
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where qx  and ex  are the vectors of generalized coordinates of rigid-body modes and elastic modes, respectively. 

The equation is combined by cδ , ξ  in time domain and sQ , cQ  in Laplace domain. 

After the minimum-state approximation is applied to the matrices of aerodynamic force coefficients and the actuators 

modelled, the dynamic equation of the aeroelastic system can be recast in the state space as follows [9] 
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and 
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Here, 
ax  is the vector of aerodynamic state, 

1 2 3, ,i i ia a a  is parameters from transfer function of the actuator driving 

the thi control surface, which is given by 
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where 

iacu  is the servo-commanded control surface deflection. 

The output equation becomes 

 

p p py C x

  

(7)

 where 

 

 p ae aeC C D

  

(8)

 For the transient maneuver analysis, it is more convenient to transform the rigid-body modes of the structure into the 

airframe states. The transformation is shown as follows. 

In the principle axes, six generalized coordinates for the rigid-body modes of the structure is 

 

 
T
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(9) 

which are generated from the finite element model. 

The transformation of qx  to Rξ  in the body axes reads 
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 where pR  is the rigid-body modal matrix in the principle axes, bR  is the rigid-body modal matrix in the body 

axes defined at the center of gravity, and 
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 The airframe axes are written as 
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(12)

 where x  is the perturbed forward position, y  is the perturbed lateral position, u  is the perturbed forward 

velocity,   is the perturbed side slip angle, h  is the perturbed altitude, p  is the perturbed roll rate,   is the 

perturbed angle of attack, r  is the perturbed yaw rate,   is the perturbed Euler pitch angle,   is the perturbed 

Euler roll angle, q  is the perturbed pitch rate and   is the perturbed Euler azimuth angle. In this paper, only 

longitudinal flights are taken into consideration. Thus, for a symmetric flight condition, the transformation yields 
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The final dynamic equation of system in the state-space form after the transformation reads 
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where 

 

e

e

a

ac



 
 
 

  
 
  

x

x
x

x

x

  (15) 

Here, pA  and pB  are the system matrices resulting from the transformation. Written in intuitive form, 
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Linear Parameter-Varying Aeroservoelastic Models 
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In this paper, a fighter symmetric climb maneuver is modelled. The aerodynamic mesh is shown in Fig. 1. The inputs 

of the ASE plant are deflections of a pair of stabilators and a pair of ailerons, and the outputs are the fighter’s load 

factor and wing-root bending moment. 

 

Fig. 1 Aerodynamic mesh of the fighter 

 

LPV models are state-space models with the state-space matrices described in the functions of time-varying 

parameters [8], 
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Where   is the vector of measurable parameters, such as Mach number, altitude and dynamic pressure. In this 

paper, the LPV ASE model is represented by the linearization on a gridded domain. The parameter of the gridded 

domain is Mach number, range from 0.3 to 0.5 in 0.02 Mach increments. Thus a set of 11 models are generated on 

grid points of the 1D parameter space, as shown in Fig. 2.  
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Fig. 2 Grid-based LPV 

 

The interpolation is using quadratic polynomial fitting. The comparison of the bode plots between the ASE models 

obtained by generation on 0.53 Mach and LPV model interpolation is shown in Fig. 3. 

 

Fig. 3 Comparison of the bode plots between the generated ASE models and interpolation 
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Robust Controller Design 

 

To synthesize the robust controller, linear fractional transformation (LFT) is necessary. LFT is a method to deal with 

the uncertainty of the model, for the LPV model discussed in this paper, the uncertainty of the Mach number can be 

modelled as follow. 

Assume the system matrix of ASE model can be written as quadratic polynomial function of parameter 0 , for 

example, 
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where   is the maximum amplitude of the uncertainty parameter,  1,1    is the nondimensional disturbance, 

then the effects of   is 
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which can be written in a short form 
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rewrite Equation (21) in LFT form as follows 
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Similarly, the LFT form of pC  can be written as 
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Then the ASE model with uncertainty is 
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written as  
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The construct of robust control system is shown in Fig. 4. 
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Fig. 4 LPV plant with LPV controller 

 

In this paper, the range of the Mach number is from 0.3 to 0.5, with the nominal value of the LFT-based LPV model 

set to be 0.48. 
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The synthesis of the MLA system, a 2-degree-of-freedom (2DOF) controller is constructed with Matlab Robust 

Control Toolbox, the block-diagram of the closed-loop system is shown in [10]. The ideal model M is a modified 

ASE model of 0.5Mach   which has the same load factor response and a small response of wing-root bending 

moment. 

 

Results and Discussion 

The open-loop maneuver is achieved by the deflection of the stabilators, as shown in Fig. 5. The closed-loop 

responses at nominal Mach number 0.48 is shown in Fig. 6. The closed-loop response of load factor tracks well with 

the open-loop one while the wing-root bending moment has been alleviated by 38%. The closed-loop responses at 

0.5Ma  , 0.4Ma   and 0.3Ma   (the maximum, the middle and the minimum Mach number) is shown in Fig. 7, 

Fig. 8 and Fig. 9, respectively. The tracking of the load factor works well at 0.5Ma  and 0.4Ma  , however, at 

0.3Ma  , load factor response can’t track the ideal model well, and the alleviation of the wing-root bending moment 

also drops to 25%. 

 

Fig. 5 Open-loop stabilators deflection 

 

Fig. 6 Closed-loop responses at 0.48Ma   

 

Fig. 7 Closed-loop responses at 0.5Ma    
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Fig. 8 Closed-loop responses at 0.4Ma    

 

Fig. 9 Closed-loop responses at 0.3Ma    

 

The numerical simulations demonstrate the feasibility of the robust maneuver load alleviation based on LPV ASE 

model. The ASE model of a wide Mach number range can be calculated by interpolation of the LPV model with high 

accuracy. Moreover, the 2DOF H  controller can be synthesized to realized the alleviation of maneuver load. 

However, the performance of the load factor tracking remains to be improved. 
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