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Summary. The nonlinear dynamical response is presented for a rotor supported by squeeze film dampers and ball bearings. 
The nonlinear Galerkin method associated with approximate inertial manifold is employed to reduce the degree-of-
freedoms of the original system for an efficient implementation of nonlinear vibration analysis. With the verified reduced 
model, the steady response of the rotor is solved considering mass unbalance, nonlinear damping and bearing forces. The 
existence of multiple frequencies factional to the rotation speed is presented, and the bifurcations in motion are identified 
with respect to the rotation speed. Based on numerical results, chaotic motion can be developed through period doubling 
and intermittency for the rotor system furnished with nonlinear squeeze film damper and ball bearings.  
 

Background of the Research 
 
Rotor assemblies are the core components of aircraft engines and gas turbines. The dynamical behaviour of a rotor 
system is complicated owing to not only the gyroscopic effect but also the presence of bearings and dampers. 
Particularly, squeeze-film dampers are nowadays mounted on rotor assemblies to provide strong resisting force 
against external shock loads. The damper force, in essence, is as a highly nonlinear function of displacement and 
velocity of the disturbed rotor. For such a nonlinear system, the efficiency of motion analysis is an important issue. 
Various methods can be used to reduce the order of the original system to a more compact one for more efficient 
nonlinear analysis. It is known that, for each dynamical system, there exists an invariant global attractor on inertial 
manifolds that restricts the dynamics of the original system and reduces it to a lower-dimensional subsystem. 
However, it is hard to isolate such an inertial manifold from the original system. Instead, an approximate inertial 
manifold proposed by Foias et al. [1] can be introduced to determine the long term behaviour of dissipative dynamic 
systems. Based on this concept, a lower order subsystem can be constructed through approximating the slave 
subsystem as a function of the master subsystem [2,3], and the reduced master subsystem can subsequently be solved 
numerically as long as its order is much smaller than the original system for the purpose of computational efficiency.  
In this paper, the nonlinear dynamical response is presented for a rotor supported by squeeze film dampers and ball 
bearings. The nonlinear Galerkin method associated with approximate inertial manifold is employed to obtain a 
reduced dynamical model for a quick implementation of nonlinear vibration analysis. The existence of multiple 
frequencies factional to the rotation speed is presented, and the bifurcations in motion are identified. It is found that 
chaotic motion can be developed through the route of period doubling and intermittency.  
 

Mathematical Formulation, Method and Result 
 
Equation of motion of the rotor system 
Considering the effects of rotatory inertia and gyroscopic force, the equation of motion for a rotor can be expressed as 

  ( ) ( ) ( ) ( , , )t t t t     Mq C G q Kq f q q                              (1) 

where q(t) is displacement of the shaft center. Herein, only the lateral motion of the rotor is considered. M, C, G and 
K are matrices of mass, damping, gyroscopic and structural stiffness. ( , , )tf q q represents the resultant forces due to 

mass unbalance, ball bearings and squeeze-film dampers (SFDs). Particularly, the reactions of the SFDs in the radial 
and tangential directions can be expressed as a set of nonlinear function of displacement and velocity, as follows 
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                      (2) 
where R, c, L are nominal radius, radial clearance and length of the damper, respectively; μ is the dynamic viscosity 
of lubricant. is the non-dimensional displacement, and   the attitude angle of the damper center. 1I , 2I and 3I are 

integration constants depending of and . 

 
Model reduction with nonlinear Galerkin method 
The nonlinear Galerkin method is employed to reduce the original dynamical model together with the construction of 
approximate inertial manifold. To this end, equation (1) is expressed as first-order ordinary differential equations  

 ( ) ( , , ) ( , ) 0, ( , ) nt t t R        u g q q u Au h u u q q                          (3) 

Adopting the Galerkin method, we expand u(t) in term of responses of master- and slave-subsystems  
 ( ) ( ) ( ),   .m pt t t m p n   u Y ξ Z η                                     (4) 

where n m
m R Y and n p

p R Z are partial modal matrices composed of the first m and the rest p=n-m eigenvectors 

of A, respectively. Similarly, let the partial modal matrices of TA  be T
mm
Y  and T

p
Z . Following Titi [3], the 

dynamics of the slave subsystem can be described on an approximate inertial manifold that is constructed in term of η  
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where T
p p J Z AZ . The master subsystem is now solved with a reduced number of degree of freedom, governed by 
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which is relatively easy to handle compared with the original system in Eq. (3). A fixed-point iteration method can be 
used to accelerate the convergence of η . The details of the algorithm will not be presented due to page limit.  

 
Verification of the reduced system  
A dual shafted rotor is modelled with finite element method considering nonlinear effects from ball bearing and SFDs 
and mass unbalance excitation, Fig.1. The total degree of freedom of the system is 60. In numerical analysis, the 
variable-step Runge–Kutta–Fehlberg method is used. Figure 2 shows the relative error of the vertical displacement at 
the unbalance compared with the full-model solution using different m as the number of master modes (NMs), sided 
by the plot of computation time. Similar comparisons are also made for vibration energies. For the prescribed 10-3 of 
maximum relative error, the dashed area gives the hint on selection of m to best satisfy both computational efficiency 
and accuracy: the degree number of the reduced model can be chosen as much as one-third of the total degree number. 

  
Fig.1 Computational model         Fig. 2 Relative error (left ordinate) and       Fig.3 Bifurcation of the vertical  

of the original system              computation time (right ordinate)           displacement at Node 8.            

Results of the Nonlinear Dynamical Response 
The response of the reduced system of the rotor is obtained numerically. The nonlinear behavior is examined in both 
time and frequency domains. Figure 3 shows the bifurcation in the vertical displacement at Node 8 with respect to the 
rotation speed. Multiple period doubling bifurcations can be found in the dashed areas I to V. Instability of the motion 
can be traced as the outcome bifurcation. The auto-power spectral density of displacement in Fig. 4(a) clearly reveals 
the multiple frequency components in the response that are fractional to the rotation speed. The orbital trajectory of 
the shaft center is shown in Fig. 4(b). As the rotation speed becomes higher, the motion of the rotor goes through 
several period doubling bifurcations and intermittency, and eventually becomes chaotic. The chaos in motion can be 
seen in the Poincare-map section, Fig. 5(a), and the orbital trajectory of the shaft center, Fig. 5(b). 

 
(a) Power spectrum density      (b) Orbital trajectory       (a) Poincare-map section       (b) Orbital trajectory 

Fig. 4 Motion response with rotation speed 5898rpm.        Fig. 5 Motion response with rotation speed 7835rpm. 
 

Conclusions 
 

In this paper, the effectiveness and efficiency of model reduction technique is demonstrated for a rotor-damper 
system through the nonlinear Galerkin method associated with approximate inertial manifold. Various nonlinear 
dynamical behaviours of bifurcation and chaos in the rotor motion are illustrated with the reduced model. 
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