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Summary. The nonlinear vibrations due to rotor-stator contact show a variety of phenomena that are not well understood, particularly in 

rotors with higher degrees of freedom. Recent work suggests many responses involving intermittent contact between the rotor and stator 

are explain by internal resonance when the system is seen in a rotating coordinate frame. Different forms of internal resonance can be 

activated by varying the drive speed. This work seeks to predict these phenomena by comparing experimental testing results with numerical 

simulation results. The rotor-stator impacts in rotating machines can cause significant damage or failure in many industrial applications of 

turbomachinery, this work is relevant to systems with long flexible rotors.  

 

Introduction 

 

In many industrial applications, such as oil drilling, airplane engine, helicopter engine, and Jeffcott rotors, the rotor-stator 

impact or rubbing forces may occur due to a mass imbalance of the rotor or misalignment of defective bearings leading to 

damage or failure. The lateral displacements on rotating machines are caused by centrifugal forces, generated by a mass 

imbalance, introduced during the fabrication process of the components or as an undesirable product of assembly. 

Reducing these lateral displacements is one of the main goals in the vibrations control of rotating machines, according 

to [1]. Considerable research has been carried out on nonlinear rotor systems with an out of balance mass, such as [2] 

and [3].  

Until now this research is the first to predict the asynchronous partial contact motion phenomena on a double rotor 

system by developing a mathematical model and conducting experimental testing to validate the simulation results. 

This research is the continuation of the work developed in [4], where a model of a shaft with two asymmetrically, non-

identical discs is mounted on pinned bearings at each end, with a snubber ring mounted at the center of the shaft with a 

fixed clearance is derived using the finite-element method. The shaft is represented by a Timoshenko beam elements 

and the discs by additional inertia terms at the nodes. In [5] a mathematical model is developed for an oxygen pump in 

an aerospace engine with elastic supports and step-diameter hollow shaft considering the dynamic response due to 

contact. The simulation results demonstrated the grazing bifurcation causes a periodic motion to become quasi-periodic 

when contact starts. 

The objective of this research is to predict the chattering or whirling of a rotor-stator contact motion in rotating machines 

using an experimental test rig to compare the results obtained with a mathematical model. The equations of motion 

predict multiple solutions at certain drive speeds, corresponding to different interactions between the modes of the 

underlying linear system.  

 

Mathematical and experimental model 
 

This research presents a mathematical model of a double rotor system with a length represented by L1 and L2  which are 

joined together by isotropic couplings having linear angular stiffness and damping kr1, kr2, cr1 and cr2 respectively, both 

rotors have a disc of mass M1 and M2 position at a specific length of each rotor, where b is the length measured from 

the excitation point where the motor is attached to the geometrical center of disc 1 and disc 2 is position at the end of 

rotor 2 at the geometrical center of disc 2, as shown in Figure 1. Each disc has a diameter d1 and d2 with a thickness v1 

and v2. The system is subjected to a radial clearance c of a stator in the form of snubber ring fixed with a linear spring 

system represented by ks, positioned at length a measured from the geometrical center of disc 2 to the center of the 

snubber ring. The inertial reference frame xyz is positioned at the origin O, where the motor provides the rotational 

speed to the system and the subscript i=1,2 represents the coordinates of disc 1 and 2.  

 

Figure 1. Drawing of the mathematical model. 
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The acceleration due to gravity acts in the z axis as shown in Figure 1. The angles ψ1, θ1, ψ2, and θ2 are the rotational 

coordinates of disc 1 and disc 2. The equations of motion were derived using Lagrange equation by deriving the kinetic 

energy, potential energy and non-conservative forces. The entire mechanical system can be represented using equation (1). 

        e iM u G u C u K u F F        (1) 

where 𝑢⃗  is the vector column with the stationary coordinates defined in (2), [M], [G], [C], and [K] represent the mass, 

gyroscopic, damping, and stiffness matrix, Ω is the rotational speed of the motor, 𝐹 e is the excitation vector which 

contains the excitation due to the mass imbalance of each disc, which is derived from the kinetic energy according to 

[6] and 𝐹 i represents the impacts between rotor 2 and the stator. The upper dot represents the derivative with respect to 

time. 

 1 1 2 2

T
u        (2) 

The equations of motion were nondimensionalized in order to transform the system into the dimensionless domain, in 

which the behavior of different physical systems can conveniently be compared. The following nondimensional 

quantities can be defined as 
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where h is an equivalent radial clearance, which is the projection of c on to the transverse xy plane at z=L1+L2-a defined 

in (3). 

1

1 2

L
h c

L L a


 
   (3) 

The coefficient r is the radial displacement of the second rotor at the stator length a which is defined in (4). 

     
2 22

1 1 2 2 1 1 2 2sin sin sin sinr L L a L L a            (4) 

Thus, equation (1) can be transformed into the dimensionless domain as shown in equation (5). 

ˆ ˆ ˆ ˆ ˆˆˆ ˆˆ ˆ ˆ
e iM u G u C u K u F F          

      
   (5) 

The matrix [𝑀̂], [𝐺̂], [𝐶̂], and [𝐾] are the dimensionless mass, gyroscopic, damping, and stiffness matrix which are 

shown in Appendix A, defined in (A.1) - (A.4) and the vector 
ˆ
eF  and 

ˆ
iF  are the dimensionless excitation vectors due 

to the mass imbalance of each disc and due to the impacts between rotor 2 and the stator which are shown in Appendix 

A, defined in (A.5) and (A.6). The vector column with the nondimensional stationary coordinates is defined in (6). 
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The equation of motion that describes the entire dynamical system in equation (5) is now transformed from the 

stationary frame to the rotating frame, according to [6]. The following transformations are applied. 

ˆˆ ˆu T u 
 

   (7) 

where [𝑇̂] is the nondimensional transformation matrix defined in (8) and 𝑢⃗ ̂̃ is the nondimensional vector in the 

rotational coordinate system. 
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Differentiating equation (7) with respect to the nondimensional time τ, with [𝑇̂] defined in equation (8) gives (9) and 

(10). 
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   (9) 
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According to [6], the following simplification defined in (11) applies to the transformation matrix 
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where [J] is shown in (12)  
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Applying equations (7), (9), and (10) in equation (5) and multiplying by the transpose of (8) on both sides of equation 

(5), gives equation (13) in the rotating frame. 
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                (13) 

The advantage of converting the equations of motion from the stationary frame to the rotating frame is to clearly identify 

the contribution of each parameter in the dynamics of a rotating nonlinear system. The term 2[𝑀̂][J]𝛺̂ represents the 

Coriolis acceleration and the term [𝑀̂]𝛺̂2 represents the centripetal softening. 

 

Experimental approach 

 

The experimental testing configuration is shown in Figure 2 (a), which consists of two discs and two rotors connected 

by isotropic helical couplings. Impacts occur on rotor 2 with a stator positioned at a given height from the wireless 

sensor, two bearings are attached on rotor 2 to reduce friction forces during contact between the stator and the rotor, as 

shown in Figure 2 (b). A brushless electric motor with integrated electronics BLDC58-50L is positioned at the top to 

give the rotational speed to the dynamical system. The voltage is controlled using National Instruments (NI) cRio-9024 

data acquisition system with output module NI-9263. The BLDC58-50L has an embedded system that monitors the 

speed of the motor, this signal is acquired using input module NI-9215 on FPGA architecture in LabView software. To 

measure the vibrations of the stator during impact a PCB triaxial accelerometer 356A02 is attached on top of the stator 

and the signal is acquired using an input module NI-9234. To measure the lateral displacements at the end of rotor 2 a 

Lord Microstrain triaxial wireless accelerometer G-Link-200-8G is attached and the signal is acquired using Lord 

Microstrain WSDA-Base-101-LXRS gateway in conjunction with SensorConnect software for the wireless sensor 

configuration and data acquisition.   

 
(a) 

 
(b) 

 

Figure 2 (a) Experimental testing configuration (b) Rotor-stator contact arrangement. 

Initial tests were conducted to characterise the underlying linear responses of the system. This will be used to make 

approximate predictions of drive speeds that will activate sustained asynchronous bouncing motions of the shaft, 

following the insights in [4]. Testing will be conducted to reproduce sustained asynchronous bouncing motion by 

exciting the system while it is being driven at a given speed. 

To determine the stiffness of the couplings preliminary testing was conducted on one coupling by attaching a rotor at 

each end of the coupling, rotor 1 was clamped to a fixed support and rotor 2 was free to vibrate like a simple pendulum, 

as shown in Figure 3. A series of testing was conducted by attaching different masses of Mtot=2.44kg, 1.44kg, and 

0.98kg to the upper part of rotor 2 close to the helical coupling as shown in Figure 3, the measured rotor length was 

l=0.14m and assuming the gravity is g=9.81m/s2. 
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Figure 3 Setup to estimate stiffness and modal damping ratio of helical coupling. 

A triaxial shear accelerometer was positioned at the mass to measure the acceleration response. The maximum 

frequency peak from the FFT spectrum in x and y direction was 2.25Hz - 2.23Hz, as shown in Figure 4 with 

Mtot=2.44kg, used in equation (14) to calculate the helical coupling stiffness, where ω is the natural frequency of the 

system. 

 

Figure 4 Acceleration response of single pendulum free to vibrate when displaced for test 1 and 2 with Mtot=2.44kg in x and y 

direction. 

2 1

2

r

tot

k g

ll M
      (14) 

The estimated stiffness of the helical coupling was kr1=kr2=5.90Nm. The first peak that appears in Figure 4 of 1.35Hz 

- 1.58Hz is coming from the natural frequency of the pendulum when the helical coupling stiffness is neglected. 

Estimating the natural frequency of the single pendulum with equation (14) taking into account g/l, the natural frequency 

is 1.33Hz.  

The modal damping ratio was also estimated by using the logarithmic decrement technique with the acceleration 

response after eliminating the DC offset, applying a band pass filter between the frequencies of 2.00Hz – 2.50Hz, and 

a Hanning Window. The estimated modal damping ratio of the helical coupling was ζ1= ζ2=0.02. 

 

Simulation 

 

The simulation involves the model shown in Figure 1. The parameters taken to analyse the dynamic performance of 

the double rotor system consist of disc 1 and disc 2 with a diameter of d1=d2=46mm and a thickness of v1=v2=19mm, 

the length of both rotors is L1=0.333m and L2=0.257m, the total mass considered is M1=0.28kg and M2=0.42kg. Disc 1 

is positioned at the mid span length of rotor 1 and disc 2 is positioned at the bottom end of rotor 2. The stator is 

positioned at a height from disc 2 of a=84mm with a radial clearance c=21mm from the stator ring to the bearings of 

rotor 2 and the stiffness of the stator is assumed as ks=391.6N/m. The mass imbalance on disc 1 is assumed to be 

e1=0mm and on disc 2 is assumed to be e2=2mm. The estimated rotational stiffness of the helical couplings is 

kr1=kr2=6.0Nm with an estimated modal damping ratio of dr1=dr2=0.02. The gravity is assumed to be g=9.81m/s2. The 

simulation time span considered is from 0s to 60.0s.  

The equations of motion are solved numerically using Runge-Kutta 4th order; an event detection function is used to 

locate changes between contact and non-contact motion. Once the contact has been established the resulting force of 

excitation can be calculated during contact.  

A Campbell diagram is shown in Figure 5 in the stationary frame to demonstrate the variation of the linear natural 

frequencies versus the rotor speed. In Figure 5, the red lines represent the forward whirl, the blue lines represent the 

backward whirl of the rotors, and the dashed green line represent the rotor speed. The linear natural frequencies can be 

estimated by obtaining the eigenvalues with the characteristic equation defined in (15), where the vector λ represents 

the eigenvalues of the stiffness matrix [𝐾] defined in (A.4), the gyroscopic matrix [𝐺̂] defined in (A.2), the mass matrix 

[𝑀̂] defined in (A.1), and the rotor speed Ω̂. 

Mass 

Triaxial Accelerometer 
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 2ˆˆ ˆ ˆdet 0K G M       
    

    (15) 

 

Figure 5 Campbell diagram of the double rotor system where the blue lines represent the backward whirl, the red lines represent 

the forward whirl, and the dashed green line represent the rotor speed. 

The crossings between the rotor speed and the linear natural frequencies of the rotors determine the critical speeds of 

the dynamical system, according to [6] where resonance will occur. The critical speeds of the system can be determined 

from Figure 5 which are 144 r.p.m., 242 r.p.m., and 254 r.p.m. In Figure 5 can be seen that the first forward and 

backward whirl are identical due to the effect of the gyroscopic terms. 

The variation of the natural frequencies versus the rotor speed in the rotating frame is shown in Figure 6, where the red 

lines represent the forward whirl and the blue lines represent the backward whirl of the rotors. The natural frequencies 

in the rotating frame can be estimated by obtaining the eigenvalues with the characteristic equation defined in (16), 

where the vector λ represent the eigenvalues of the stiffness matrix [𝐾] defined in (A.4), the gyroscopic matrix [𝐺̂] 

defined in (A.2), the mass matrix [𝑀̂] defined in (A.1), and the rotor speed Ω̂. 

      2 2 2ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆdet 2 0K M G J M J G M                    
          

   (16) 

 

 

Figure 6 Natural frequencies in the rotating frame of the double rotor system where the blue lines represent the backward whirl 

and the red lines represent the forward whirl. 

A brute force bifurcation is developed according to [4] to study the model due to the discontinuous nonlinearity by 

conducting several time-domain simulations. The bifurcation diagram shown in Figure 7 reveals the bouncing orbits 

at supercritical drive speeds. The bifurcation diagram in Figure 7 was done by developing a range of simulations 

conducted with different rotor speeds from 0 r.p.m. to 500 r.p.m. The set of angular initial conditions considered is 0 

rad, 0.2 rad, 0.4 rad, 0.6 rad, 0.8 rad, and 1.0 rad each initial condition is placed to rotor 1, rotor 2 individually and to 

both rotors simultaneously in the x axis for each rotor speed. The steady state part of the orbit r2 was determined at the 

stator height a and the maximum values from each rotor speed and initial conditions were obtained. 
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Figure 7 Bifurcation diagram by brute force for a range of different initial conditions the dashed black line represents the stator 

radial clearance and the color cross are the different initial conditions considered. 

All cases shown in Figure 7 settle to synchronous whirling motion where the radial displacement of the stator node 

remains constant. In Figure 7 the first peak at 142 r.p.m. corresponds to the first critical speed of the system in the 

stationary frame. The motion up until 350 r.p.m. is either linear forward whirl (non-contacting) or in the case of the 

higher amplitude oscillations between 140 r.p.m. - 150 r.p.m. and again between 222 r.p.m. - 298 r.p.m a constant 

contact forward whirl occur. The linear forward whirl can also exists as a possible stable solution between 290 r.p.m. - 

350 r.p.m. and between 406 r.p.m - 500 r.p.m. 

The asynchronous bouncing-type partial contact motion start to occur at 350 r.p.m. to 402 r.p.m. depending on the 

initial condition considered. The idea is to reproduce this asynchronous partial contact motion using the experimental 

test rig described in the previous section.  

The best simulation results to demonstrate the asynchronous bouncing-type partial contact motions are obtained when 

considering the initial condition of 1.0 rad applied in the x axis to rotor 1 and rotor 2 simultaneously with a rotor speed 

of 352 r.p.m. 

In Figure 8 (a) and Figure 9 (a) is shown the orbits of rotor 1 and rotor 2 at L1 and L2 respectively, between the time 

span of 45.0 s and 58.0 s in the stationary frame at the rotor speed of 352 r.p.m. shows that while the motion seems 

orderly it is not periodic in the stationary frame; the orbit shown will continually precess each other. In Figure 8 (b) 

and Figure 9 (b) is shown the orbits of rotor 1 and rotor 2 at L1 and L2 respectively, between the time span of 45.0s and 

58.0s in the rotating frame at the rotor speed of 352 r.p.m. shows the periodic motion of rotor 1 and rotor 2 when viewed 

in the rotating frame. 
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Figure 8 Steady-state partial contact orbit of rotor 1 at drive speed 352 r.p.m. between the time span of 45.0s and 58.0s, the dashed 

black line is the stator clearance (a) Partial contact orbit in the stationary frame. (b) Partial contact orbit in the rotating frame. 

 

Figure 9 Steady-state partial contact orbit of rotor 2 at drive speed 352 r.p.m. between the time span of 45.0s and 58.0s, the dashed 

black line is the stator clearance (a) Partial contact orbit in the stationary frame. (b) Partial contact orbit in the rotating frame. 

In Figure 10 shows the radial displacement of rotor 2 over the entire time span represented by a blue line and the stator 

radial clearance is represented by a dashed black line. From Figure 10 is obtained the maximum displacement of the 

steel bars attached to the stator under the impacts of rotor 2 which is approximately 4.6 cm. The high displacements of 

the steel bars at the stator are due to the low stiffness assumed in the simulation.   

In Figure 11 is shown the Poincaré maps sampled at the drive frequency (Ω) for rotor 2 at L2 between the time span of 

45.0 s and 58.0 s at (a) in the stationary frame and at (b) in the rotating frame when the rotor speed is 352 r.p.m. In 

Figure 11 (a) the rotor motion in the stationary frame is not periodic. However, in the rotating frame shown in Figure 

11 (b) the orbit is periodic.  

The mathematical model presented gives the response of a double rotor system to be able to predict and reproduce in 

an experimental test rig the asynchronous bouncing type partial contact motion of the rotor when impacts occur with a 

stator. Future work is currently plan to validate the simulation results with the experimental results obtained from the 

test rig described earlier to be presented. 
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Figure 10 Radial displacement of rotor 2 at the height of the stator the blue line represents the rotor radial displacement and the 

dashed black line represent the stator radial clearance. 

 

Figure 11 Poincaré maps of rotor 2 at drive speed 352 r.p.m. between the time span of 45.0s and 58.0s (a) In the stationary frame 

with respect to ψ2. (b) In the rotating frame with respect to θ2. 

 

Conclusion 

 

The equations of motion in the rotating frame of a double rotor system with isotropic helical couplings with discs 

attached at a given length of the rotors, where a rotor can impact with a stator positioned at a given length of a rotor, 

are derived in this paper. These equations accommodate the nonlinear effects due to impact between the stator and the 

rotor which accommodate the quadratic coupling terms, a 2:1 internal resonance takes place, which result in the 

asynchronous bouncing type partial contact motion of the rotor. A description of the experimental test rig was presented. 

The approach used to determine the stiffness and modal damping ratio of the helical couplings was demonstrated. The 

parameters determined experimentally were used in the simulation to demonstrate the partial contact motion of the 

rotor. In the future work the asynchronous bouncing type partial contact motion of the double rotor system predicted 

with the mathematical model will be validated with the experimental test rig presented in this paper. 
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Appendix A 

 

The dimensionless mass, gyroscopic, damping, and stiffness matrix [𝑀̂], [𝐺̂], [𝐶̂], and [𝐾] are defined in (A.1) - (A.4).  
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The dimensionless excitation vector due to the mass imbalance of each disc 
ˆ
eF  is defined in (A.5).  
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The dimensionless vector due to the impacts between rotor 2 and the stator 
ˆ
iF  is defined in (A.6). The coefficient 𝐻(𝑝̂) 

is a penalty function defined in (A.7). 
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