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Summary. Relatively simple model of the process of maintaining balance by a person standing on a seesaw is considered. The 
model consists of a planar single-link inverted pendulum, which is connected by means of a cylindrical hinge, i.e., an “ankle joint”, 
to a support in the form of a segment of cylinder (seesaw), whose axis is perpendicular to the pendulum. The support can oscillate 
by rolling on a horizontal surface, and the pendulum can oscillate in the same plane as seesaw. The studied system has unstable 
equilibrium with vertical inverted pendulum and horizontal upper surface of the seesaw. The control is a torque applied on the axis 
of the hinge. This torque is assumed to have a restricted absolute value. A control law is constructed in the form of feedback along 
a single “unstable” coordinate of the open loop system in such a manner that the region of attraction of the unstable equilibrium 
would be the maximum possible. Several characteristic trajectories of the nonlinear system for the control constructed are 
considered.  
 

Mathematical model of single-link pendulum on seesaw 
 
We consider simple model of the maintenance of a human vertical posture on the movable platform (seesaw). The 
corresponding tests with persons standing on the seesaw have become popular in biomechanical investigations and 
sportive medicine [1-5]. It is natural to assume that under limited torque in the ankle the person standing on the 
seesaw strives to maximize the region of initial perturbations that can be overcome. Therefore, we study the problem 
of design control that stabilizes the unstable vertical posture and ensures “large” basin of attraction of this desired 
posture. The basin of attraction is understood to be the set of initial states from which the system asymptotically 
approaches the desired equilibrium. We study the mechanical system which consists of the seesaw of mass m, and 
inverted single-link pendulum of mass M fastened on its upper surface in point S by means cylindrical joint, i.e. 
“ankle joint”. The planar scheme of the considered mechanical model is shown in Fig. 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. 

 
Torque Q is applied in ankle joint S. Point C is the centre of mass of the pendulum, and pρ  is its radius of inertia 

relative to point S. In fact, seesaw is the cylindrical segment. The cylinder radius is R, and ρ  is the radius of inertia of 

the seesaw relative to its centre of mass G which is located in symmetry plane of the segment; point O is the axis of 
the cylinder. The seesaw is in contact with horizontal surface along the straight line K. It rolls over the surface 
without slipping and detaching. Straight lines O, S, and K are orthogonal to the plane of the drawing; OK is vertical 
line. Thus, the system has two degrees of freedom and two generalized coordinates – angles α and ϕ (see the left-
hand part of Fig. 1). For the quantities shown in Fig. 1 we take the following notation and conditions: 0OS h= > , 

0OG r= > , SC l= . In the first stage, it is expedient to consider the described above simplified model of the person 
oscillations. The results of the tests in [6] enable us to assume that the motion when the person is balancing on the 
seesaw, at least for some people, may be described approximately using a similar model.  

The equations of motion in the form of Lagrange’s equations of the second kind are written in the following 
matrix form (g is the gravity acceleration):  
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Motion equation (1.1) is written in matrix form in analogy to the equation describing in [7] the motion of an 

anthropomorphic mechanism.  
It is obviously that if applied in the joint S torque 0Q = , then system (1.1) has the equilibrium position  

 

( )0 0q q= = α = ϕ = α = ϕ =& &&      (1.2) 

 
and this position is unstable.  
 

Linearized dimensionless equations of motion, characteristic equation 
 
Linearizing matrix equation (1.1) in the vicinity of the unstable equilibrium (1.2), we obtain  
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Introduce dimensionless time τ according to expression  
 

( )t g R hτ = −             (2.2) 

 
Using prime ′  to denote the differentiation of the variables with respect to dimensionless time (2.2), we write the 
linearized matrix equation (2.1) in the form  
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Values a, b, and c are dimensionless parameters of the system, u is dimensionless control torque. It follows from 
expressions (2.4) that parameters a and b are positive, since R h> . Also parameter c is positive, since 0h >  and 

0r > .  
The characteristic equation of system (2.3) (with 0u = ) has the form  
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λ =∑ ,    0 1e ab= − ,  1 0e = ,  2e ac b= − ,  3 0e = ,  4e c= −    (2.5) 

 
Let us prove that coefficient for the highest power of characteristic Eq. (2.5) is positive, i.e.,  
 

0 1 0e ab= − >       (2.6) 

 
Inequality (2.6) is equivalent to the following inequality written in the original (dimensional) parameters:  
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   (2.7) 

 
Recall that pρ  is the radius of inertia of the pendulum relative to its fulcrum S, and l is the distance from fulcrum S to 

the centre of mass C of the pendulum; therefore,  
 

p lρ >        (2.8) 

 
Under this condition (2.8) inequality (2.7) holds, and inequality (2.6) consequently also holds.  

Characteristic equation (2.5) is biquadratic one:  
 

4 2
0 2 4 0e e eλ + λ + =          (2.9) 

 
Equation (2.9) has one positive root 1 0λ > , one negative – 2 0λ < , and two imaginary roots 3 4, iλ λ = ± ω , because 

0 0e >  and 4 0e < . Besides, 1 2λ = −λ . The spectrum of the system is symmetrical relative to the both axes of the 

coordinates in the complex plane. And it is naturally because our system is conservative one.  
 

Controllability of the system 
 
To analyze the controllability of system (2.1) (or (2.3)) in Kalman sense we use Hautus criterion [8-10] for second-
order systems. In accordance with this criterion, system (2.3) is fully controllable, if and only if the following equality 
holds for all the eigenvalues λ of this system:  
 

2rank ,    2d dA C Dλ + =               (3.1) 

 
For matrices dA , dC  and D relation (3.1) takes the following form:  
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Since the eigenvalues λ of the system satisfy characteristic equation (2.9), for controllability it is necessary and 
sufficient that for each eigenvalue of the system, at least one of the two matrices  
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appearing from relation (3.2) would have full rank. This requirement is not satisfied if the determinants of both 
matrices in (3.3) vanish simultaneously when at least one of the roots of Eq. (2.9) is substituted into them. In other 
words, this requirement is not satisfied if the system relative to  λ considered, which is composed of Eq. (2.9), and 
equations  
 

( ) ( )2 21 1,   1a b c+ λ = + λ = −           (3.4) 

 
has at least one solution. From equations (3.4), after 2λ  is eliminated from them, we obtain the equality 

( )1 1 0a c b+ + + = , but it cannot be satisfied, because a, b and c are positive values. Therefore, the system of equations 

(2.9) and (3.4) does not have any solutions. Thus, system (2.3) is fully Kalman-controllable.  
 

Torque of the viscous friction forces 
 
Let us represent torque Q as a sum of control torque uQ  developed by the drive and the torque of the acting in the 

ankle S viscous friction forces with coefficient 0k > :  
 

( )uQ Q k= − α−ϕ& &            (4.1) 

 
Using this last expression, equation (1.1) can be rewritten as follows:  
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( ) ( ) 2 sin uA q q Bq F q q C q DQ+ + + =&& & & ,  ( ) , 1, 2ijB b i j= = ,  11 22 12 21,   b b k b b k= = = = −   (4.2) 

  
Below we consider the motion of system (4.2) under admissible control torque uQ PC∈  that is restricted in absolute 

value:  
 

( ) ( )0 0   u u uQ t Q Q const≤ =          (4.3) 

 
It is obviously that if torque 0uQ = , then system (4.2) (as system (1.1)) has unstable equilibrium position (1.2). 

Linearizing equation (4.2) in the vicinity of the unstable equilibrium position (1.2), we obtain  
 

0 uA q Bq Cq DQ+ + =&& &           (4.4) 

 
 System (4.4) is Kalman-controllable as system (2.3) because the torque of the viscous friction forces is applied in 

the same ankle-joint as the control torque developed by the drive (see expression (4.1)).  
Introducing dimensionless time τ according to formula (2.2) we come to the equation  
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with the same matrices ,  d dA C  as in expressions (2.3) and the same dimensionless parameters a, b, and c as in 

expressions (2.4). But in equation (4.5) (see inequality (4.3))  
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Here value 0χ >  is dimensionless coefficient of viscous friction, u is dimensionless control action developed by the 

drive.  
The characteristic equation of system (4.5) (for 0u = ) is described by expression (2.5) with the same coefficients 

0e , 2e , 4e , but with  

 

( )1 2e a b= χ + + χ ,   ( )3 1e c= χ −              (4.7) 

 
We will examine the issue of the number of roots of Eq. (2.5) (see also coefficients (4.7)) that have a positive real 

part when there is friction in hinge S. In accordance with the Routh–Hurwitz criterion [11] the number of roots of 
algebraic equation (2.5) with a positive real part is equal to the number of sign changes along the sequence  
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We evaluate determinant 2G :  

 

( )( ) ( )( )2 1 2 0 3 2 1 1G e e e e a b ac b ab c= − = χ + + χ − + − −          (4.9) 

 
If the distance l SC=  is sufficiently large, then inequalities 1c <  and 0ac b− >  hold. The latter inequality follows 
from expressions (2.4) and inequality (2.8). When these conditions and condition (2.6) are satisfied, then, as follows 
from expression (4.9), 2 0G > . Then 1 2 0G G > . Now in sequence (4.8) there is exactly one sign change, regardless of 
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the sign of 3G . In this case, Eq. (2.5) has only one root 1λ  located in the right half-plane of the complex plane. This 

root 1λ  is real one of course.  

 
Design of the stabilization algorithm with large basin of attraction 

 
On the basis of the model adopted, we will consider the problem of stabilizing small oscillations of a single-link 
inverted pendulum mounted on the seesaw. Let for 0u =  and 0χ >  system (4.5) has a single eigenvalue 1λ , which 

is located in the right half-plane of the complex plane, while all of its other eigenvalues lie in the left half-plane. For 
such a system we want to construct a control, which stabilizes the unstable vertical position of the inverted pendulum 
and the horizontal position of the seesaw platform with the maximum basin of attraction. In other words, we want to 
stabilize the unstable equilibrium (1.2) with maximal as possible basin of attraction. Here the basin of attraction is 
understood to be the set of initial states from which the system asymptotically approaches the origin of coordinates. 
One of the natural problems of a person standing on a seesaw is to return to a state of balance when there are “large” 
deviations from it. In other words, it is natural to assume that the person strives to maximize the region of initial 
perturbations that can be overcome. To solve the formulated above problem we will use the method previously 
described in [12].  

We write system (4.5) in the Cauchy form, i.e., in the form of the system of first-order equations  
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Here I is the unit matrix. Equilibrium state (1.2) is described in the new variables by the relation  
 

x 0≡                (5.2) 
 

We reduce system (5.1) to Jordan variables using the non-degenerate transformation  
 

 y Tx=                  (5.3) 

 
 and isolate the equation which corresponds to the positive eigenvalue 1λ  from it. This equation describes the 

behaviour of an “unstable” (in the absence of the control, 0u = ) Jordan variable, which we will denote by 1y :  

 

1 1 1y y pu′ = λ +       (5.4) 

 
In Eq. (5.4) 0p ≠ , since the original system is completely controllable in the Kalman sense. By choosing the sign of 

the variable 1y  we can ensure satisfaction of the inequality p > 0.  

We will assign the control u in the form of linear feedback along the unstable coordinate 1y :  

 

1u y= −γ           (5.5) 

 
When 1 pγ > λ , control (5.5) ensures asymptotic stability of the trivial solution 1 0y =  of Eq. (5.4) and 

consequently of solution (5.2) of the entire system (5.1), since it does not alter (“does not shift”) the remaining three 
eigenvalues of this system, which have negative real parts. 

Under restriction 0≤u u  (see (4.6)) linear control (5.5) takes the form of linear feedback control with saturation:  
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Control (5.6) guarantees the maximum possible basin of attraction for the trivial solution 1 0=y  of Eq. (5.4), as 

well as for solution (5.2) of the entire system (5.1). The prove of this assertion is described in [12]. This basin is 
described in Jordan variables by the inequality  
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Jordan variable 1y  is linear combination of phase variables ,  ,  ,  α ϕ α ϕ& & . Consequently control (5.6) depends on 

these four original variables.  
In dimensional variables control (5.6) has the form  
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Here  
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and 1 jT  ( )1,  2,  3,  4=j  are the components in the first row of transformation matrix T (see expression (5.3)); this 

row corresponds to the variable 1y . Basin of attraction (5.7) is described in the original dimensional variables of state 

by the inequality  
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11 12 13 14
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λ

& &
uQ pR h
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         (5.10) 

 
and has the form of a hyperlayer in the four-dimensional space of the phase variables ,  ,  α ϕ α&  and ϕ& . When 1 0jT ≠  

( )1,  2,  3,  4=j , this hyperlayer intersects the coordinate axes at the values of the phase coordinates  
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Trajectories of motion 

 
We take the following values of the parameters of the system:  
 

0106 ,    2.2 ,    0.9 ,    0.45 ,    0.38 ,    0.41 ,   0.12 ,    49 uM kg m kg l m R m h m r m m Q N m= = = = = = ρ = = ⋅  

 
These parameters correspond approximately to a man of normal constitution above average age. The radius of inertia 

1.04 p mρ =   was calculated for a homogeneous thin rod of length 2l . The roots of characteristic equation (2.5) are 

equal to 0.23±  and 4.25i± , when ( )0 0k = χ =  and to 1.5 3.9i− ± , to 0.24− , and 0.23, when 5 k N m s= ⋅ ⋅  

( )0.06χ = , i.e., 1 0.23λ = .  

In Fig. 2, we present for 5 k N m s= ⋅ ⋅  the characteristic trajectories of the motion of our systems.  
The shown in Fig. 2 trajectories were obtained as a result of numerical integration of complete nonlinear 

equations (4.2) and of linear equations (4.4) under initial conditions that are close to the boundaries of basin of 
attraction (5.10). The control was chosen in form (5.8), (5.9) with 13 2pγ = λ  ( )0.21p = . The initial conditions 

were chosen so that the angle of deviation α from the equilibrium position 0α =  would be equal to 98% of the value 

of supα  and the angle of inclination of the seesaw ϕ and both angular velocities α&  and ϕ&  would be equal to zero.  

The upper and middle parts of Fig. 2 show the time dependences of the angle of deviation α of the pendulum 
from the vertical and the angle of rotation ϕ of the platform. The lower part of Fig. 2 shows the time dependence of 
the control torque uQ . The solid lines show the results of the numerical solution of linearized system (4.4), and the 

dashed lines show the results of the solution of nonlinear system (4.2). Under the selected initial conditions, the 
trajectories of the nonlinear system (4.2) are close to the trajectories of the linear system (4.4) and both tend 
asymptotically to the equilibrium posture. According to the graphs presented, in the case considered the motion 
breaks down into two stages: in the first stage, torque uQ  takes the minimum possible value 0

uQ− , and the system 

moves near the equilibrium eq , which satisfies the relation  
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0sin e uC q DQ= −  

 
In this stage of the motion, the pendulum deviates by an angle close to the value  
 

0

arcsin 0.052u
e

Q

Mgl
α = ≈  

 
and the seesaw turns “rapidly” through an angle close to the value  
 

( )
0

arcsin 0.12u
e

Q

Mh mr g
ϕ = ≈

+
 

 
After this, the pendulum and the seesaw perform oscillations in the vicinity of these “intermediate” equilibrium. 

When the coefficient of friction is large, the oscillations decay rapidly in this stage. In the second stage, the system 
tends to the assigned equilibrium 0q = . The torque uQ , following the variable 1y , asymptotically tends to zero.  

 

 
Figure 2.  

 
At small values of the viscosity coefficient k, oscillations which “correspond” to complex eigenvalues decay 

slowly, but the character of the motion does not change. 
The described above behavior of the system (4.2) under control (5.8), (5.9) corresponds to some extent to 

sensations of several test subjects when they tried hard to maintain balance on the seesaw.  
 

Conclusion 
  
Feedback control with saturation is designed to stabilize the inverted single-link pendulum on the seesaw. Designed 
control law ensures large basin of attraction of unstable equilibrium. Studied mechanical system can be considered as 
a model of a human maintaining balance on the seesaw.  
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