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Summary. Relatively simple model of the process of maintgjnbalance by a person standing on a seesaw sdavad. The
model consists of a planar single-link invertedgadam, which is connected by means of a cylindiiéage, i.e., an “ankle joint”,
to a support in the form of a segment of cylindereaw), whose axis is perpendicular to the pendulhe support can oscillate
by rolling on a horizontal surface, and the pendukan oscillate in the same plane as seesaw. THe&edtsystem has unstable
equilibrium with vertical inverted pendulum and izontal upper surface of the seesaw. The contraltesque applied on the axis
of the hinge. This torque is assumed to have act=st absolute value. A control law is construdtethe form of feedback along
a single “unstable” coordinate of the open looptesysin such a manner that the region of attractibthe unstable equilibrium
would be the maximum possible. Several characiertsajectories of the nonlinear system for the tomnconstructed are
considered.

Mathematical model of single-link pendulum on seesaw

We consider simple model of the maintenance of mdrvertical posture on thmovable platform(seesaw). The
corresponding tests with persons standing on teease have become popular in biomechanical invegiigaand
sportive medicine [1-5]. It is natural to assumatthnder limited torque in the ankle the persomditey on the
seesaw strives to maximize the region of initigtymbations that can be overcome. Therefore, waystive problem
of design control thastabilizes the unstable vertical posture and ensures “labgain of attraction of this desired
posture. The basin of attraction is understoodeahe set of initial states from which the systesynaptotically
approaches the desired equilibrium. We study thehargical system which consists of the seesaw ot masind
inverted single-link pendulum of ma#4 fastened on its upper surface in pdiby means cylindrical jointi.e.
“ankle joint”. The planar scheme of the considemasthanical model is shown in Fig. 1.

Figure 1.

TorqueQ is applied in ankle joing PointC is the centre of mass of the pendulum, @ndis its radius of inertia

relative to pointS In fact, seesaw is the cylindrical segment. Théndgr radius iR, and p is the radius of inertia of

the seesaw relative to its centre of m@swhich is located in symmetry plane of the segmpaint O is the axis of
the cylinder. The seesaw is in contact with horiabsurface along the straight line It rolls over the surface
without slipping and detaching. Straight lin@sS, andK are orthogonal to the plane of the drawiff is vertical
line. Thus, the system has two degrees of freeduwint@o generalized coordinates — angleand¢ (see the left-
hand part of Fig. 1). For the quantities shown ig. B we take the following notation and conditipol®S=h>0,
OG =r>0, SC =I. In the first stage, it is expedient to consider tlescribed above simplified model of the person
oscillations. The results of the tests in [6] eral$ to assume that the motion when the persoalamding on the
seesaw, at least for some people, may be des@jimdximately using a similar model.

The equations of motion in the form of Lagrangedgiaions of the second kind are written in theclalhg
matrix form @ is the gravity acceleration):
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A(q)q+F(q)q2+CS|l’q:DQ, q:H:;H’ q2: $2 , = z:::lx) (11)
Here
Alal< Mp? MI[ Rcosa —h cog¢ —a) |
(a)= MI[ Rcosa —h cog¢ -a)] M(R2+h2— Bh co$)+m(p2+R2+r2— Rr cqzs)'
~ 0 Mihsin(¢ - a) _[-Mai 0 |1
Fla)= ~MI[ Rsina +hsin(¢ -a)] (Mh+mr)Rsinq>" C’H 0 (Mhmr)g“’ D‘H—]”

Motion equation (1.1) is written in matrix form analogy to the equation describing in [7] the motaf an
anthropomorphic mechanism.
It is obviously that if applied in the joilgtorque Q =0, then system (1.1) has the equilibrium position

q=3=0(a=¢=a=¢=0) (1.2)
and this position is unstable.
Linearized dimensionless equations of motion, characteristic equation
Linearizing matrix equation (1.1) in the vicinity the unstable equilibrium (1.2), we obtain

Mp? MI(R-h)

R 5 (2.1)
MI(R-h) m(R-r)"+M(R-h)"+mp?

A)q-l-cq:DQ, Ab:

Introduce dimensionless tinteaccording to expression

t=t/g/(R-h) (2.2)

Using prime’ to denote the differentiation of the variableshwiespect to dimensionless time (2.2), we write the
linearized matrix equation (2.1) in the form

"+C,q=Du o TR e 2.3)
Ad+Ca=DbU, A= g Gl '
Here
az P pomRIEM(R-B) et Mnem Q) @)
(R-h)I"’ MI(R~-h) ’ M Mgl '

Valuesa, b, andc are dimensionless parameters of the systeis, dimensionless control torque. It follows from
expressions (2.4) that parametarandb are positive, sinceR > h. Also parametec is positive, sinceh >0 and
r>0.

The characteristic equation of system (2.3) (with 0) has the form

4
>eA"™"=0, g=ab-1, =0, g =ac-b, =0, g, =—¢ (2.5)
n=0

Let us prove that coefficient for the highest powkcharacteristic Eq. (2.5) is positive, i.e.,
g =ab-1>0 (2.6)

Inequality (2.6) is equivalent to the following tneality written in the original (dimensional) paraters:
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p2[ m(R=r)* +M (R=h)*+mp | -MI*(R-h)* >0 2.7)
Recall thatp,, is the radius of inertia of the pendulum relativets fulcrumS, andl is the distance from fulcrui@to
the centre of mags of the pendulum; therefore,

p,>I (2.8)

Under this condition (2.8) inequality (2.7) holdsid inequality (2.6) consequently also holds.
Characteristic equation (2.5) is biquadratic one:

eA' +er’+e, =0 (2.9)

Equation (2.9) has one positive rabt> 0, one negative -A, <0, and two imaginary rootd,,A, = iw, because
g >0 and g, <0. Besides,A;, =—A,. The spectrum of the system is symmetrical redativ the both axes of the
coordinates in the complex plane. And it is natyraécause our system is conservative one.

Controllability of the system
To analyze the controllability of system (2.1) (@r3)) in Kalman sense we use Hautus criterion(Bftr second-

order systems. In accordance with this criterigsteam (2.3) is fully controllable, if and only ¢ following equality
holds for all the eigenvalu@sof this system:

rank"AH)\2 +C,, D||: 2 (3.2)

For matricesA, , C, andD relation (3.1) takes the following form:

rank‘

Since the eigenvalues of the system satisfy characteristic equation)(2Z@& controllability it is necessary and
sufficient that for each eigenvalue of the systahteast one of the two matrices

I L M

bA%+c
appearing from relation (3.2) would have full rarikis requirement is not satisfied if the determisaof both
matrices in (3.3) vanish simultaneously when asti@me of the roots of Eq. (2.9) is substituted ititem. In other
words, this requirement is not satisfied if thetegs relative toA considered, which is composed of Eq. (2.9), and
equations

=2 3.2
A bA*+c - (3:2)

aA2-1 A2 11”

(a+1)A?=1, (b+I)A?=-c (3.4)

has at least one solution. From equations (3.4gr ak® is eliminated from them, we obtain the equality
(a+:l)c+b+1: 0, but it cannot be satisfied, becaasd andc are positive values. Therefore, the system of Bops

(2.9) and (3.4) does not have any solutions. Téystem (2.3) is fully Kalman-controllable.
Torque of the viscousfriction forces

Let us represent torqu@ as a sum of control torqu@, developed by the drive and the torque of the gdiinthe
ankleSviscous friction forces with coefficierk > 0:

Q=Q,~k(a-9) (4.1)

Using this last expression, equat(1.1) can be rewritten as follows:
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A(q)4+Bq+F(q)¢* +Csig=DQ,, B=|o| (i,j=12), b,=b,=k, b,=b,=-k (4.2)

Below we consider the motion of system (4.2) uratémissible control torqu&, O PC that is restricted in absolute
value:

Q () sQ (Q=const) (4.3)

It is obviously that if torqueQ, =0, then system (4.2) (as system (1.1)) has unsehidibrium position (1.2).
Linearizing equation (4.2) in the vicinity of thestable equilibrium position (1.2), we obtain

AG+Bg+Cqg=DQ, (4.4)
System (4.4) is Kalman-controllable as system)(@Be®ause the torque of the viscous friction foisempplied in

the same ankle-joint as the control torque develdpethe drive (see expression (4.1)).
Introducing dimensionless tinteaccording to formula (2.2) we come to the equation

1 —
Aq' +XB,q +C,q=Du, B, :H—l 11“ @9

with the same matrices\,, C, as in expressions (2.3) and the same dimensioplasaneters, b, andc as in
expressions (2.4). But in equation (4.5) (see iabtyu(4.3))

K9 oS
X_Mgl' u_MgI (|u(r)|su,u const] (4.6)

Here valuex >0 is dimensionless coefficient of viscous frictianis dimensionless control action developed by the

drive.
The characteristic equation of system (4.5) (for 0) is described by expression (2.5) with the sanedfimients
& &, e, butwith

e =x(a+b+2x), e =x(c-1) 4.7

We will examine the issue of the number of root&qf (2.5) (see also coefficients (4.7)) that haymositive real
part when there is friction in hingg In accordance with the Routh—Hurwitz criterioi]the number of roots of
algebraic equation (2.5) with a positive real pagqual to the number of sign changes along theesee

G,, G, GG,, GG,, e, (4.8)
where
e e g & 0
G, =6>0, G =¢>0, Gzz‘ " G=lg; & €, g=-<0
& & 0 e e
We evaluate determina@, :
G, =ee,~eg,= X[ (a+b+2x)(ac-b)+(ab-1)(1-c)] (4.9)

If the distancel = SC is sufficiently large, then inequalities<1 and ac—b >0 hold. The latter inequality follows
from expressions (2.4) and inequality (2.8). Whease conditions and condition (2.6) are satisfikeln, as follows
from expression (4.9)G, >0. ThenG,G, >0. Now in sequence (4.8) there is exactly one slgange, regardless of
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the sign ofG,;. In this case, Eq. (2.5) has only one ragtlocated in the right half-plane of the complexn@aThis
root A, is real one of course.

Design of the stabilization algorithm with large basin of attraction

On the basis of the model adopted, we will consitier problem of stabilizing small oscillations ofsagle-link
inverted pendulum mounted on the seesaw. Leufer0 and x >0 system (4.5) has a single eigenvalye which

is located in theight half-plane of the complex plane, while all of its other eigalues lie in thaeft half-plane. For
such a system we want to construct a control, whiahilizes the unstable vertical position of threerted pendulum
and the horizontal position of the seesaw platfarith the maximum basin of attraction. In other wgyrdie want to
stabilize the unstable equilibrium (1.2) with maginas possible basin of attraction. Here the basiattraction is
understood to be the set of initial states fromchtthe system asymptotically approaches the oggicoordinates.
One of the natural problems of a person standing seesaw is to return to a state of balance wiere &ire “large”
deviations from it. In other words, it is natural assume that the person strives to maximize th@nmeof initial
perturbations that can be overcome. To solve thmdtated above problem we will use the method nesly

described in [12].
We write system (4.5) in the Cauchy form, i.e.thia form of the system of first-order equations

X' =dx+Hu; x:‘qH (D:H (_)1 I_l : H=‘ 3 (5.1)
q “A'C XA'B, A'D
Herel is the unit matrix. Equilibrium state (1.2) is dabed in the new variables by the relation
Xx=0 (5.2)
We reduce system (5.1) to Jordan variables usimg¢im-degenerate transformation
y =Tx (5.3)

and isolate the equation which corresponds topibsitive eigenvalueA, from it. This equation describes the
behaviour of an “unstable” (in the absence of thetol, u = 0) Jordan variable, which we will denote lyy:

y1’ = )\1y1 +pu (5'4)

In Eq. (5.4) p# 0, since the original system is completely conttulain the Kalman sense. By choosing the sign of

the variabley, we can ensure satisfaction of the inequality p > 0
We will assign the contral in the form of linear feedback along the unstaiglerdinatey, :

u=-vy, (5.5)

When y>A,/p, control (5.5) ensures asymptotic stability of thiwial solution y, =0 of Eg. (5.4) and
consequently of solution (5.2) of the entire sys{éi), since it does not alter (“does not shiftig remaining three

eigenvalues of this system, which have negativepaas.
Under restrictiodu| <u° (see (4.6)) linear control (5.5) takes the forntimgar feedback control with saturation:

-u® when vyy, <-u°
u=<-yy, when vyly|<u®, y>A/p (5.6)

u® when vy, >u’

Control (5.6) guarantees the maximum possible bafsattraction for the trivial solutiory, =0 of Eq. (5.4), as
well as for solution (5.2) of the entire system1}5.The prove of this assertion is described in).[This basin is
described in Jordan variables by the inequality

uO
[va| < Tp (5.7)

1
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Jordan variabley, is linear combination of phase variables ¢, &, ¢ . Consequently control (5.6) depends on

these four original variables.
In dimensional variables control (5.6) has the form

-Q when Q/<s-Q]
Q, =1 Q when |Q]<Q] (5.8)
Q' when Q'2Q]

Here

R-h

Q' =-ymgl {Tna +T 0+ (To +T1ﬂ>)} . Y>N/p (5.9)

and T, (j =1, 2, 3, A) are the components in the first row of transforamamatrix T (see expression (5.3)); this

row corresponds to the variable. Basin of attraction (5.7) is described in thegral dimensional variables of state
by the inequality

R-h Qlp
MalA,

-l—il.l(x + T12¢ + <

(T8 +T.9) (5.10)

and has the form of a hyperlayer in the four-dinemesl space of the phase variabtes$, & and ¢ . WhenT,; #0

(j =1, 2, 3, A) this hyperlayer intersects the coordinate axd¢iseavalues of the phase coordinates

0 0 0 0
cxSl.l = i Qu p ' ¢SU = i Qu p ' dSU = i g Qu p 1 q)SU = i g Qu p
PTIMGAT, T T MgIAT, T T VR-h MgIAT, T VR-h MgIAT,

Trajectories of motion

We take the following values of the parametershefdystem:
M =106kg, m= 2.%g ,|= 0..n ,R= 0485 h= 088 rr= 0mMlp50.12m, Q°= 4N [

These parameters correspond approximately to aafmfaormal constitution above average age. The sadifunertia
p, =1.04m was calculated for a homogeneous thin rod oftter®y. The roots of characteristic equation (2.5) are

equal to +0.23 and +4.25, when k=0 (x=0) and to -1.5+ 3.9, to -0.24, and 0.23, when k =5 N [In[$
(x=0.08), i.e., A, =0.23

In Fig. 2, we present fok =5 N [In[$ the characteristic trajectories of the motion wif systems.
The shown in Fig. 2 trajectories were obtained a®sault of numerical integration of complete noeln
equations (4.2) and of linear equations (4.4) uridigial conditions that are close to the boundarié basin of

attraction (5.10). The control was chosen in fof8), (5.9) withy=3\,/2p (p:O.2]). The initial conditions
were chosen so that the angle of deviatidnom the equilibrium positiora =0 would be equal t®8% of the value

of and the angle of inclination of the seesand both angular velocitied and ¢ would be equal to zero.

asup

The upper and middle parts of Fig. 2 show the tdependences of the angle of deviattof the pendulum
from the vertical and the angle of rotatiprof the platform. The lower part of Fig. 2 shows time dependence of
the control torqueQ, . The solid lines show the results of the numerstdiition of linearized system (4.4), and the
dashed lines show the results of the solution oflinear system (4.2). Under the selected initiahditions, the
trajectories of the nonlinear system (4.2) are elts the trajectories of the linear system (4.4 &oth tend
asymptotically to the equilibrium posture. Accoglito the graphs presented, in the case considéeednbtion
breaks down into two stages: in the first stagegue Q, takes the minimum possible valu€’, and the system

moves near the equilibriurg, , which satisfies the relation
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Csing, =-DQ°
In this stage of the motion, the pendulum deviatean angle close to the value

QO

a, =arcsin——= 0.05;
Mgl

and the seesaw turns “rapidly” through an angleelo the value

0
¢, = arcsinQ—u = 0.1:
(Mh+nr)g

After this, the pendulum and the seesaw perfornilasons in the vicinity of these “intermediategeilibrium.
When the coefficient of friction is large, the ditions decay rapidly in this stage. In the secstabe, the system
tends to the assigned equilibriugr= 0. The torqueQ, , following the variabley, , asymptotically tends to zero.

0.06

o

0.03[

-50 '
0 1 2
Figure 2.

At small values of the viscosity coefficiekt oscillations which “correspond” to complex eigalues decay
slowly, but the character of the motion does naingje.

The described above behavior of the system (4.2ewurontrol (5.8), (5.9) corresponds to some extent
sensations of several test subjects when theylided to maintain balance on the seesaw.

Conclusion

Feedback control with saturation is designed tbikta the inverted single-link pendulum on the sme. Designed
control law ensures large basin of attraction aftable equilibrium. Studied mechanical system acandnsidered as
a model of a human maintaining balance on the seesa
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