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Summary. In this paper, we investigate the nonlinear dynamics of a functionally graded (FG) nanobeam with geometric nonlinearity 
embedded in the Kelvin-Voigt viscoelastic medium. By using the D’ Alembert principle, a nonlinear partial differential equation is 
obtained for transverse motion of FG nanobeam subjected to external and parametric excitations and thermal load. Bifurcations and rout 
to chaos are investigated by using the Galerkin and incremental harmonic balance method. Criteria of existence of chaos under the 
influence of different types of external excitation is given based on the Melnikov method. Moreover, effects of system parameters on the 
periodic and chaotic motions are investigated through several numerical examples. 
 

Introduction 
 

The functionally graded materials (FGM) are composed of at last two-phase inhomogeneous particulate 
composites, which are synthesized in such manner that volume fractions of constituents vary continuously along any 
desired spatial direction. This results in smooth variation of mechanical properties along a desired direction. 
Nazemnezhad et al. [1] have analyzed the free nonlinear vibration of FG nanobeam based on the von Karman 
deformation, Euler-Bernoulli beam theory and nonlocal elasticity. Ansari et al. [2] proposed nonlinear dynamic model 
to analyse the nonlinear forced vibration of FG nanobeam in thermal environment based on the surface elasticity theory. 
Yuda and Zhiqiang [3] analyzed bifurcation and chaos behavior of a thin circular FG plate in thermal environment by 
using the Melnikov method for two types of external excitations. The authors prove the existence of chaos by plotting 
the phase portraits and Poincare maps. 

The mathematical models of nanostructures in thermal environment subjected to external and parametric 
excitation plays a crucial rule in the analysis and design of a new micro and nanoelectromechanical system. In the case 
when a FG nanobeam is under combined influences of time dependent axial and transversal loads, failure may occur at 
loads much smaller than those induced by static transversal or axial loads. The aim of this paper is to analyses the 
bifurcation and rout towards chaos of a FG nanobeam in thermal environment by using the IHB method and Melnikov 
method.  

Using the D’ Alembert’s principle, nonlocal constitutive relation and Euler-Bernoulli beam theory, the governing 
equation of the embedded FG nanobeam in thermal environment (Fig. 1) can be expressed as: 
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where 𝐼𝐼1 = ∫ 𝜌𝜌(𝑧𝑧)𝑑𝑑𝑑𝑑 
𝐴𝐴  is the area mass density, {𝐴𝐴11,𝐵𝐵11,𝐷𝐷11} = ∫ 𝐸𝐸(𝑧𝑧)
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𝐴𝐴  are the FG material parameters. 
By applying the Galerkin discretization and IHB method on the Eq. (1), we obtain the following incremental equation  

[𝑲𝑲]{Δ𝒂𝒂} = {𝑹𝑹},                                                                                        (2) 

in which [𝑲𝑲] is the coefficient matrix, {𝑹𝑹} is the corrective vector, {Δ𝒂𝒂} is the vector of Fourier coefficients Δ𝑎𝑎𝑖𝑖 and 
Δ𝑏𝑏𝑖𝑖. The set of linearized algebraic equations presented in Eq. (4) can be solved incrementally by using Newton – 
Raphson procedures as described in [4]. 

 

 
Fig. 1 The FG nanobeam embedded in a viscoelastic medium, a) simply-supported and b) clamped-clamped nanobeam. 

 
Considering Melnikov theory for analyzing the homoclinic orbits and intersection of stable and unstable manifold [5], 
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Numerical results   

 
Here, we analyze the periodic solution obtained by IHB method for combined excitation of the FG nanobeam 

for two types of boundary conditions, S-S and C-C, as shown in Fig. 2. After setting the values of dimensionless 
parameters, we can start with the incremental procedure as follows: I) we introduce the initial conditions for 𝑎𝑎0  where 
other values of Fourier’s coefficients are equal to zero; II) we apply the Newton – Raphson method for determination 
of incremental  values of Fourier’s coefficients  𝜟𝜟𝑨𝑨 based on the Eq. (27), until residue Euclidian norm |𝑹𝑹| is smaller 
than adopted tolerance 10−𝟓𝟓. Presented periodic solutions for buckled FG nanobeam is validated by using Runge 
- Kutta method, and we show excellent agreement.  

 

 
Fig. 2 Periodic behavior of FG nanobeam obtained from IHB method, a) S-S and b) C-C boundary conditions. 

 
Based on the Melnikov function Eq. (3), the bifurcation curves for homoclinic orbits in (𝜉𝜉, 𝜇𝜇�) plane, where ∆𝑇𝑇 = 600 𝐾𝐾, 
are show on the Fig. 3, in which 𝜉𝜉 is the amplitude of external load and 𝜇𝜇� is the damping ration. The region under the 
curves in the Fig. 3 represents chaotic regions.  

 

 
Fig. 3 Bifurcation curves for FG nanobeam obtained from Melnikov function, a) S-S and b) C-C boundary conditions. 

 
Conclusions 

It is shown that the IHB and the Melnikov method are very efficient technics to predict the periodic and chaos behavior in 
micro/nano-scale systems and devices.  
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