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A solution of the general single contact frictionless problem using tools of b-geometry
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Summary. This study provides a new systematic formulakéamling to equations of motion for a class of meat® systems subject
to a single frictionless contact constraint. Toiaeé this goal, some concepts of b-geometry ateedi setting up a suitable and
strong theoretical foundation. A set of ordinarffatiential equations (ODES) is first derived foetbase of minimal coordinates,
which can be viewed as the projection of the equatif motion along the normal direction to the baany of the configuration
space to all other directions. Then, a comparisitimtive equations obtained for systems subjectiateoal constraints is performed.
Finally, the basic new theoretical concepts atssitbted by two selected examples.

Introduction - Objectives

The dynamics of constrained mechanical system<iassical and beautiful subject of Analytical Manfts, which
has received the continuous attention of the emrging research community, over a long period okti.g., [1-6]).
Despite all the efforts, there still remains alpte& of challenging theoretical aspects on theestlthat remain open.
Consequently, new studies in this area are of lprgetical significance, since their successfutomte can cause an
impact in formulating and solving complicated eregiring problems. Traditionally, this subject hasrbédivided in
two major areas. In the first, the constraints cffey the motion of a system can be expressed bglitigs and give
rise to forces which can be compressive or tenBibe.this reason, such constraints are calleddvdatin the second
area, the constraints involve contact with or withiviction and generate forces which can act ie dinection only, in
order to avoid interpenetration. Such constrairesdescribed by inequalities and are known as temda

Currently, there exists a vast literature on thgjestt of unilateral constraints. Based on the typanalysis performed,
the available approaches can roughly be divideaiéngroups. In the first group, the research isdeated by applying
classical analytical tools [7-11], while the work the second group is more heavily based on ideasresmooth
mechanics involving convex analysis [12-16]. Irefirthese methodologies apply the classical lawsaatfon up to a
time where contact is established between thedatielg bodies. Then, based on the short durativheoimpact phase
following the contact, it is assumed that the posibf the system components does not change apphgowhile the
forces developed at the contact are excessivee Jarausing a significant change in the velocitiethe impacting
bodies. This brings the need to introduce an imlzgact predicting the sudden change in the velaittensidered as a
shock. Typically, such a change in the velociteepredicted by using Newton’s or Poisson’s restitutoefficients or
other similar concepts [8, 11].

In the great majority of the previous studies anghbject, the approach leading to prediction@fibst-impact velocity
is algebraic in nature. However, in some casegjrieinterval where the contact event takes piscensidered to be
short but finite and the contact process is modbledn approximate set of ODEs, with the normalitsg playing
the role of a time-like parameter [7, 9-11]. Thisknown as a Darboux-Keller approach and is cuyeminfined to
contact between two particles or rigid bodies [T4le present work can be considered as a firsttetegrds extending
and generalizing this type of analysis to systemssessing general dynamic properties, by adoptiaggeneral
framework of Analytical Dynamics. Specifically, theain objective of this work is to present a newfaolation for an
important and practically significant class of pgeshs, involving unilateral constraints. Building arpthe strong
relation between mechanics and differential geoynfdfr, 18], the methodology developed is basedanesrecent
work of the authors on mechanical systems subgebilateral constraints [19, 20], together with onew geometric
concepts. Namely, some powerful tools of b-geomatey utilized for setting up a suitable framewankstudying
mechanical systems subject to unilateral consgdibi¥, 21, 22]. In particular, the present studguses on the
investigation of a class of systems involving aykrfrictionless contact. In this way, several meathematical ideas
are introduced and explained in a problem involvangufficiently high but not excessive level of inacical
complexity. Moreover, the analysis is performeé way providing a solid foundation for a subsequexté¢nsion and
application to more complex mechanical problemgliving friction or even multiple contact event®{15].

The present work takes a different perspectiverante than previous studies on the subject. The miffierence is
that Newton’s second law of motion is applied edening the relatively short time interval where @tact event
occurs between two of the interacting bodies. is Way, there is no need to define extra concdigesthe restitution
coefficient. However, the most fundamental aspédhe present work is that the analysis performedains fully
smooth. Namely, the generalized velocities andctireesponding momenta remain smooth and boundedgdtire
entire contact phase. This is achieved by usingescemarkable tools of b-geometry, referring to theory of
manifolds with boundary and the introduction of @ppropriate vector bundle over the constrained igordtion
manifold, consisting of smooth velocity fields onlgl, 22]. Consequently, the new approach proviaestrong
theoretical basis for a systematic formulation iegdo the equations of motion for mechanical systénvolving a
single frictionless contact. A set of ODEs is fidstrived for the case of a minimal set of coordisafrhese equations
are found to describe the action in directions radramd tangent to the boundary, in a fundamenthifgrent manner.
Then, these equations are compared to those obtfineystems subject to bilateral constraintsafynthe basic new
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theoretical concepts are illustrated and reinfofcetther by a selected set of mechanical examplpart from a more
accurate and realistic modeling of the impact phése results of the present analysis are expeotdead to the
development of more efficient and robust numericdlemes for mechanical systems involving contact.

The organization of this paper is as follows. Fisgtme basic concepts are summarized in Sectidlugrating the
relation between the theory on manifolds with bamydand mechanicalystems with a unilateral constraint. The
essential geometric properties of such manifolésaso presented. This provides a strong theotdiasis for a
systematic formulation leading to the equationgnotion, included in Section 3. A comparison to egst subject to
bilateral constraints is also presented. Finallyy tharacteristic examples are examined in Sedtion

M echanical systemsinvolving contact and geometric properties of manifoldswith boundary

This study focuses on the dynamics of mechanicstesys involving collision between their componertssingle
contact event is possible to occur at a time, wiicfrictionless. The motion is described by a segeneralized

coordinates,q=(d,...,q"), corresponding to a poinp, moving as a function of timé& on the n-dimensional
configuration manifoldM of the unconstrained system [3]. The corresponeidetween poinip and its coordinates
g is established by a mapping from a neighborhoog @6 the Euclidean spadR", with form

a=¢(p), ()}

known as a coordinate map [17]. Here, the set ofdinates selected is assumed to be minimal.
The possibility of contact between the componehth®system is described by an inequality conditio

o(p) 20, 2

representing a unilateral constraint and definihg@ersurface, which is embedded in the originatifioéd and restricts
the motion of the figurative particle in one side of this hypersurface only [21]. Thisigrates a manifol , which

possesses a boundadX defined by the equality in condition (2) and atefior X° = X\dX , represented by the
disjoint union X = X°[1dX . Then, the motion of the system is representea ciyrve on manifoldX . Also, a tangent
vector to the curve at a poirg belongs to am-dimensional vector spacg, X , the tangent space @t. Therefore, if

B, ={g ... e} isabasisofl X and after employing the following summation corti@m

ue =>" ue and ueg=)"ue,
any of its elements can be put in the form

u=u'e =ug+ue, ®)
with | =1,...,n andi =2,...,n. Then, the tangent vector bundle ovéris defined by

TX=LTX. 4

pOX

If V(X) is the space of all smooth vector fields ¥n its elements are not well-behaved #nsince integration to

obtain the corresponding flows is not closedXn Fortunately, there exists a remarkable remedsedan the theory
of manifolds with boundary [21]. According to thfgeory, one has to consider a smaller space of gnweator fields
on X, which are tangent to the boundary. Namely, thvestor fields are elements of a new space, detiyed

V, (X) ={V OV(X): Vis tangent todX }. 5)
This means that if the coordinates= (x,...,x") are introduced at a poirp of the boundarydX , so that they all
vanish atp, i.e., ¢(p) =0, then any element of a vector field belonging/f¢X) can be put in the form

‘v=axg, +ayg, (6)
over a holonomic basi®; ={g, ..., g;} near the boundary, witp = x' 20. Therefore, the elemenlxslgl and g,

form a spanning set fov, (X) near the boundary. Then, it can be shown thaetagists a vector bundfd X over
X, the b-tangent bundle, which does not suffer ftbendrawbacks of X [13]. This and its dual bundle will be used

in the following section as a domain and image sgacevaluating the derivatives in the law of roati
Next, the emphasis is placed determining the essential geometric propertiethefconfiguration manifold with
boundary X . In analogy to classical Riemannian geometry,nadiric is expressed in the following form

"9=5,3 07’



ENOC 2017, June 25 — 30, 2017, Budapest, Hungary

with respect to any basl’siB*g of the coordinate system originating from the la@ordinatesx at the boundary, with
0, =<5, g, . First, at points away from the bounda¥ ,

9, =05, (7
where g,, are the components of the metric on manifld On the other hand, at points near the bounddty
9,=0,+0,, ®)
in the coordinate system examined, with
6. =0,/(x)* and g, =§; =0. )
Moreover, employing the classical metric compaitipitondition [23], it can be shown that
Gn =b’g,,. (10)
If the transformation between the origingtcoordinate system and the-coordinate system is expressed in the form
X =Aq", (1,1'=1,...,n) , (11)
then, the metric components in tikecoordinate system are determined by
9, =BB gy (12)

where g,,. are the components of the metric with respechéoct-coordinate system. Alsd3 =[B/] is the matrix
inverse toA=[A|] . Therefore, their components are related by

ABS =0 and BjAS=0,. (13)
Then, the single terng,, is spread all over the metric matrix through tfaas$formation

Gy = ALAY Gy (14)

and the components of the exact b-mefj¢ with respect to the original basis TGJX can be put in the form

Gy =9y + 01y - (15)

The elements of the first line of matri&=[A,] , needed for determining thg,. by Eq. (14), are evaluated by using
the fact that the gradient vectdrp should be normal to the boundary hypersurfacenddfby p =0. Then,

A =(0p,8&) . (16)
In analogy to the material presented for the b-imelig. (8), the b-affinities are also decomposethée form
AS = AN +AS, 17)

with respect to any basfﬁBg of '*rpx . The termsA\} are the affinities of the ordinary vector bundie , defined

over the manifoldM , with respect to a basBs; of T, X, while A are terms signaling the presence of the manifold
boundary. The latter terms are negligible away fréxn, so that

AN =AK  over X°, (18)

meaning that the b-affinities coincide with theinety affinities away from the boundary. To see wia@ppens near
the boundarydX , a local x -coordinate system is selected for convenienceg again. Then, based on the velocity

transformation expressed by Eq. (11), the ordimdfipities are evaluated in the ba§i’§g by

A5 = BBy ALAT, + ABS (29)
where A\, are the affinities with respect to the originabisa®, of T,X . In addition, starting from Eq. (12) and
employing Eq. (13), it can easily be shown that

B =g A}g, and Bj,=B]B;, (20)
sinceg'” g, = Jy. . Determination of the correction ternds; in Eq. (17) is more involved. First, it is straifgrward

to show that these boundary terms are componeatteofsor, by noting that the b-affinitiés, transform in an exactly
K

similar way as the ordinary affinitie4;, governed by Eq. (19). Then, based on Eq. (11)riis out that
Al =B BJASALN,, with AS, =AS -Af. (1)



ENOC 2017, June 25 — 30, 2017, Budapest, Hungary

Moreover, by employing Eq. (13), the last relatfamishes these terms in the origingtcoordinate system, given
AY, in a local x -coordinate system. These steps complete the ratetetermining the components of the exact b-
affinities AK,. with respect to the original basis ©fX, through Egs (11) and (13).

Equations of motion for the single contact frictionless problem

The natural trajectory of a system on its configioramanifold is determined through applicatiorNgfwton’s law of
motion [18,19]. On a manifold without boundary sthaw is expressed in the form

O.p =1 (22)
where O represents an affine connection on the manifadhat the term in the left hand side represemstvariant
differential of the generalized momenpé along a path on the manifold with tangent veatorAs usual,

o, PD:(p| _/\Sl p|_VJ )?I with p, = glJVJ ; (23)
while f stands for the applied forces [6]. Next, this lawpplied on the constrained manifad in the form

bljy ?D — f0 (24)

r=h|

since the appropriate vector and covector quastiive in prX and bT[:X , respectively. Within a layer close to the

boundarydX of X, with a small widthb, both the metric components and the affinitiesadfected in a significant
manner by the presence of the boundary, leaditigetoecessity of applying a boundary layer anal=ts

The laws of motion expressed by Eqgs (22) and (2d)identical in the interiorX° of manifold X . Inside the
boundary layer, the coordinaté is of the order of the layer width, which is much smaller than any characteristic
length of the problem. Also, the action in the difen normal to the boundary is not coupled witl thotion in the
tangent plane to the boundary hypersurface. Likewnis impulse occurs in the tangential directiams$ mo coupling
exists with the motion in the normal directionalidition, the forcing termg, (with |1 =1,...,n) are selected to be of

small order, while a forcing ternﬁAl is introduced, so that it is negligible away frdme boundary and

£, %) = [% - (:’(lf;z] x5 ab) (25)

at the boundary. The functioﬁ(xl;a, b) guarantees a smooth transition of the boundagefnrom the inner to the
outer region of the boundary layer. A possibleréin of such a function is as follows
8(x;a,b)=1-s(x;a,b),
with
f (X e’ x>0
s(xa,b) =s(x2), s(x) S 1 ¢ and f(x)=
f(X)+ f(1-x) 0, x<0
Then, keeping only the dominant terms within tharmtary layer, it turns out that
h=p-ALpy-f,=0 and R =p-A, pVv -f =0, (26)
along the normal and tangential directions of tberalary, respectively. Finally, by employing Eql)lthe equations
of motion can be transformed to component form wét$pect to the originaj -coordinate system, with form
P —AS. PV —f.=0, for 1'=1,..,n. @7)
These constitute a coupled setrpfODESs. In order to see in a better way what happeas the boundary, by a simple
manipulation of the last equation and omitting $healler order terms, the last equation yields exadht
A:IL'(ﬁl_/_\ilf)l 1_f1):0' (28)
Therefore, each of these terms represents a pmject the equation of motion along the normal dien to the
boundary to all directions of the-coordinate system.

In contrast to unilateral constraints, bilaterahstoaints are expressed as equalities, with gefaral
¢R@,9)=a’@qg =0, (I'=1....,n and R=1...,k), (29)
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in the original g -coordinate system. In some cases, these equatonge integrated and put in the form

¢*(a)=0. (30)
According to results presented in a recent study, fhe equations of motion of such systems caputén the form
P = Ay PV = = YL A (MeA®) + G + kA = Tl (31)

where A% represents the coordinate of a single dimensiomlifold M. In the last relation and in the sequel, the
convention on repeated indices does not appliR taVloreover, the remaining parameters are deterntiyed
Mg =CrOuGR . G =G fip (A ADGR, ke =—Crfi (@A, F=cr (a1, (32)
with the components of the speciatvector ¢, selected so that they satisfy the condition
a"(cr) =1 = ac=1. (33)
In general, Eq. (31) leads to a setrofecond order coupled ODEs in the-k unknownsq and AR. The additional
information needed for a complete mathematical tdation is obtained by th& equations of the constraints [19]
(M) + T + ke =0 Or (Meyf") +Tef” =0. (34)
These results demonstrate that the equations abmof a system with bilateral constraints constita set of ODEs
on the original configuration manifold, but withfféirent form than Eg. (26) or (27). Also, the effe€ the unilateral
constraint is realized as a modification of thergetric properties of the manifold and not as aieg&in on the degrees

of freedom. Therefore, in contrast to the actiorbitdteral constraints, a unilateral constraint sloet reduce the
dimension of the original configuration manifoldtlmnly its extent.

Examples

Two examples are presented in this section. Ifitsieone, the dynamics of Eq. (26) is investigatearoughly, while
the second example serves as a vehicle for illirstyéhe sequence of the basic steps leading tegbations of motion.

Plane collision of a particle with arigid wall

The mechanical system considered first consists siigle particle with a mag®1, moving in a plane and hitting a
rigid wall. Therefore, the particle position candetermined by two Cartesian coordinates, qb)and qz, while the

original configuration space iM =IR?. Here, thex-coordinate system is chosen to coincide with ¢heoordinate
system. Also, the corresponding metric matrix dredffinities away from the boundary are

G=[g,]=ml, and A{=0, (I,J,K=1,2),

respectively, wherel, is the 2x 2 identity matrix, while the wall is located a' =0. Therefore, the boundary
defining function is the following

p@)=q.
Moreover, the particle hits the wall with negligiftiction and an initial velocity, = (V" VT)T .

First, the action along the normal direction to bloeindary is determined by solving Eq. (26). Fds,tthe parameters
k, and ¢, in Eq. (25) for the boundary induced force ardestin the form

k,=kb® and ¢ =cb?/v .
Then, Eq. (26) can be put in the form

[%vl] '—%(vl) 2 —Xﬁl " V_‘z‘)’:l) =0, (35)
with g,, =m and V' = X*. Using the initial conditions<'(0) =a and v'(0) = -V, the solution of this second order
nonlinear ODE inx" can be expressed in the form

X (t)=ae”® and VA(t) =V (€% ~1)ak/c-1]e’ VR = y(t;k,C), (36)
with

B(t) = (V)2 [(k+c/a) gy (e %) 1) ~ ckt/v]/c?
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The analytical solution is convenient in demongtathe effect of the spring-like parameterand the damper-like
parameterc during the contact phase. Some characteristidtseong these lines are presented next. All theselts
were obtained by assuming a unit value as a referealue for the parametebs, m, k and c, corresponding to a
suitable normalization.

First, in Fig. 1a are presented results for théohysof the displacement component along the nowfiraktion to the
boundary, forc =0 and several values of the spring-like paramé&tehe results indicate that an increase in theevalu
of k causes a reduction in the penetration depth tbdhedary layer. In all cases, the diagrams ararstmic with

respect to the liné =t , corresponding to the time where the velocity congntV' normal to the boundary becomes

zero. In classical formulations, the tiresignals the end of the compression phase. Alsoialthe absence of energy
dissipation effects, the compression and expangiloases have equal duration. Finally, the histogésthe
corresponding velocities are shown in Fig. 1b. @yeshe effect ofk is more pronounced on the form of the velocity
histories for relatively small values of this paeter.

Likewise, in Fig. 1c are presented results fordigplacement along, for k =1 and several values of the damper-
like parameterc . Here, an increase in the value®fcauses a reduction in the penetration depth, agam. However,

it also causes a break in the symmetry of the diagrwith respect to the lite=t_ . This becomes more evident as the
dissipation effects, quantified by the coefficiant become stronger. In fact, for excessive values pthe normal

velocity at the end of the contact phase tendstto, gradually, approaching conditions of plastintact. These effects
are illustrated in a better way in Fig. 1d, whére torresponding velocity histories are shown.

0.75 -

[ ‘ (d)]
0 05 t’[tf 1

0.5

Fig. 1. Effect of the boundary forcing parametér on the figurative particle (a) displacement andvocity normal to the wall,
for ¢ =0. Effect of parameteC on the (c) displacement and (d) velocity normahewall, fork =1.

The results presented in Fig. 2 reveal more oreffext of the boundary layer forcing parametkrsand c . First, in
Fig. 2a is illustrated their effect on the duratadrthe contact phasé; . Specifically, the results presented indicate that

an increase in the value of eithleror ¢ causes a reduction in the duration of the comqthase. In addition, based on
the results of Fig. 1d, it becomes clear that aneiase in the value of causes a decrease in the amplitude of the
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velocity of the particle when it exits the bound#ayer. This indicates dissipation of the kinetiergy. In order to
better quantify this effect and relate it to prexctudies, in Fig. 2b are presented results adality evaluating the
corresponding classical kinematic and dynamictrggiin coefficients

e, =V'/vV and e =p,/p,. (37)

defined by Newton and Poisson, respectively [11, Idthe last expressions, represents the normal component of
the velocity of the particle as it leaves the bamydayer, att =t . Moreover,

P, :J: f(r)dr and p, =I:' f(r)dr, (39)

where f (t) is the force exerted on the particle from the walffact, settingt =t in Eq. (36) provides an analytical

expression for the restitution coefficiegy . The results obtained indicate that the valueg,pfand g, are virtually
indistinguishable for the same valuelofand ¢, which is consistent with previous studies onetyst with no friction
[14]. Also, the restitution coefficients have vakgual to one foc =0 and all values ok , corresponding to cases of
an elastic impact, while they take a value lesa thae forc > 0. In addition, an increase in the valuelofleads to an
increase in the value of the restitution coeffiti@vhich is opposite to the effect of the dissipatparametec .

(a)

K 8 10
Fig. 2. Effect of parameter& andC on (a) duration of contact phase and (b) restitutioefficients.

Finally, the results depicted in Fig. 3 illustraéite effect of the ratica/b, selected in the cut off function appearing in
Eq. (25). First, in Fig. 3a are shown results far history of the displacement component alongtivenal direction to
the boundary, for the nominal valués=1 and ¢ =1 and several values of the rata'ifb. Likewise, in Fig. 3b are
shown results for the corresponding velocity congminThe results demonstrate that a rapid convesgen the
numerical results to the analytical solution iseved in the limita/b — 1.

1
o
=
1 T
a 0.5
—
P
0.8}
a/b=0.80
- a/b=0.80 e afb=0.90
- a/h=0.90 e
---a/b=0.95 ----a/b=0.95
fanamical_ analytical
0.6[
‘ ‘ ‘ . (a) ‘ ()
0 0.5 1 1.5 t 2 25 15 t 2 25

Fig. 3. Effect of ratio a/b on the particle (a) displacement and (b) velogdymal to the wall.
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Spatial collision of arigid body with a rigid wall

In the second example, a rigid body hitting a rigidll in the absence of friction is examined. Imegrl, the
configuration space of a free rigid body can berespnted by a six dimensional product configuratspace

M =R*xM (3) [25]. This means that the position and orientabéthe body with respect to an inertial reference
frame IF, at any timet , can be represented by a point on this manifoith generalized coordinate(_sg(t) split in two

parts, 0. and . The partq. includes the coordinates of the center of mas$§tBeobody with respect t& , while

O is associated to the rotational motion of the bddhen, the velocity vector is written as

v =(ve va)',
with V. = ¢ (t) . For the rotational component of the rigid bodjoedy, it is convenient to introduce a set of guas

coordinatesd in place ofg; so that

Ve=2=(Q" Q% Q%" and 9=T(qy)4. (39)
whereT(0y) is the tangent operator @ [26]. Based on the expression for the kinetic gnef the body, the metric
on spaceM can then be selected in the following block diaajdarm

ml, O

Gq _[glj'] _|: 0 JC:|’ (40)
where m is the mass and is the mass moment of inertia matrix of the bodthwespect to a frame fixed in the
body, with origin at its center of mass and ana@ndrmal basis§ €, €,}. Moreover, the only non-zero affinities
A}, are related to the rotational part of the motiod are selected to take the following constanteslu

Nog =Ngs =N5, =~ N56=N5s= N1 (41)

Next, consider a point P on the body, which at saretance comes in contact with a plane rigid wal| as shown in
Fig. 4. This plane is defined by

3 i
S(l() _zizlsx _0’ (42)
where X is the position vector of a point on this planéhwiespect tdF . In addition, the position vector of point P
with respect to framéF is given by
X =G +R(G)I, . (43)
where R is a 3% 3 rotation matrix fixing the orientation of the bouth respect tdF, while I, is the position vector

of point P with respect to the body frame [26]. iihie unilateral constraint for the contact ewxamined is expressed
in the form

P(g) =s(%)=20. (44)

Fig. 4. A rigid body hitting a plane rigid wall.

Using the above expression for the boundary dedjifimction, the first step in the analysis devetbpethe present
study is the determination of the elemeﬁfs. Based on their definition by Eq. (11), these elats are included in the
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special covector

_ dp_,0p 0p
A1= l' - - . 45
A== 506y a9 (@5)
Direct evaluation of these partial derivativesjtigkinto account Eqgs (42)-(44), leads to
) 0 o
ﬁ#sl s, s) and £=—(s¢ s, S)RL=(s, s, s),

where [}, is the 3% 3 skew-symmetric matrix havind, as an axial vector [26]. This yields

1
A - (S.L SZ S3 SA SS Sﬁ) " (46)
Moreover, due to the block-diagonal form of the meanatrix in the X-coordinate system, its inverse matrix is also of
the same form, with

9" =Yg, 47)
Next, combination of Eqgs (12) and (13) leads to
gIJ =AI'Aj]’gI'J' = gllel'AjL'gl’J'. (48)

In addition, if the axes of the body frame are ctelé to coincide with the principal axes of inedfahe rigid body, the
inverse of the metric matrix defined by Eq. (40jadsnd in the diagonal form

G;'=[g"”] =diagll/m 1/m Ym ¥J, ¥I., 1) (49)
Therefore, employing Eq. (47), in conjunction wiEhs (46), (48) and (49), it is straightforward &tetmine the term
gll =1/gll = [(312 + S22 + S??)/m-'- Sf/‘]c 1+ SS/JC 2+ S g/‘]C J_ j' (50)

This, in turn, allows determination of the ter@p, , by using Eqgs (9) and (10). The quantdy, is a key term, since by
employing Eqg. (14) in conjunction with Eq. (48)suds in

@m' = S’SJ’Qll' (1)
Subsequently, this leads to evaluation of the tegms, through Eqgs (15) and (40), which completes therdgnation
of the elements of the metric matrix near the baupdexpressed in the origingl-coordinate system.

The determination of the geometric properties ndedéhe application of Newton’s law of motion israpleted

by next employing Eg. (20), together with Eqs (48Y (49), for evaluating the quantiti&', included in the special
vector

BLE[BJI_']:gll(SJ/m s;/m s/m s/, SJch sdJc %T' (52)
Then, using the expression fak}l and substituting these quantities in Eq. (21)dgethe boundary induced terms

AL, in the form
AIK'J’ = _%g'SJ'S_'gLK O
since the contribution of the remaining nonzertm’t;avﬁﬁJ is negligible. Also, the ternx" = p(q) is evaluated from

Eq. (44). Finally, Eqg. (17) in conjunction with E@1) complete the determination of the b-affiniti&,’ﬁ, in the g -
coordinate system.

At this point, all the information needed for wniti the equations of motion either in the logatoordinate system, by
employing Eq. (26), or in the origind] -coordinate system, by using Eq. (28), is available

Synopsis

This study provided a systematic geometric solutioa fundamental problem of Mechanics, referrmgynamics of
colliding mechanical bodies during a single frialigss contact event. It was performed within theegeal framework
of Analytical Mechanics and employed some conceptdifferential geometry on manifolds with boundaifhis
boundary was first detected by using the form ef timilateral constraint. Then, an appropriate vebtmdle was
established for evaluating derivatives on a madifeith boundary. Next, the essential geometric prips needed for
the application of Newton’s law of motion were dateéed near the manifold boundary, so that theairghase takes
place close to that boundary. These propertiec@rwith the usual configuration manifold propestaway from the
boundary but vary rapidly inside a thin layer, @dhe normal direction to the boundary. The newraggh provided



ENOC 2017, June 25 — 30, 2017, Budapest, Hungary

a clear, accurate and global picture on the dynaudhicing the whole impact phase. Specifically, asviound that the
impulse occurs along the direction of the configiora manifold which is normal to the boundary. Mover, the
equations of motion appear in an ODE form, in casttto classical formulations, which lead to aeysof DAES. In
fact, the unilateral constraint alters the geomatrioperties but does not affect the dimensionhef donfiguration
manifold.

The most important contribution of the new appromcthat it can describe fully and in a consistemd accurate
way the motion of the class of systems examinethduhe short contact phase. This eliminates thezite consider
non-smooth response. Specifically, the velocitya@® smooth and its component normal to the boyndamishes at
it, by construction. In fact, it was shown that tigurative point representing the motion of thestsyn in the
configuration manifold can not reach the bounddug to the special action of the boundary. In pakdr, the presence
of the boundary causes a rapid increase in the itoalgnof the metric and connection terms relatechtdion normal
to the boundary. In addition to these changesctiffg the inertia properties of the figurative goestrong spring-like
force appears also near the boundary, pushingigieafive point away from it. This force may possesother
component, representing the dissipation takingepldaring impact. These boundary effects assurettigakinetic
energy remains bounded. Also, there is no needdorae a loss of indeformability during the confalwdse of rigid
bodies, which is a common feature of previous sidrinally, the clarification of the dynamics bétimpact process
is expected to provide valuable insight and helghin efforts to develop more efficient and robustk forms and
numerical schemes for studying the dynamics anfdpeaing control and optimization of mechanical gyst involving
impacting components.
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