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Summary. Due to weak couplings, large time-delays, etc., a network of interconnected dynamical systems may exhibit a phenomenon
of incomplete synchronization where some but not all systems behave synchronously. The phenomenon is called partial synchronization
or cluster synchronization. To describe the pattern of partial synchronization, so-called partial synchronization manifolds are used,
which are linear invariant subspaces of C, the state space of the network of systems. Here, we focus on partial synchronization manifolds
in networks of identical systems interacting via linear diffusive coupling with inclusion of time-delays. Based on a recently proposed
existence criterion for partial synchronization manifolds in terms of the block structure of a reordered adjacency matrix, we present an
improved algorithm for computing partial synchronization manifolds, particularly, for networks with invasive delayed coupling whose
coupling term does not vanish when relevant systems are synchronized. It is shown that the computational cost is largely reduced using
the improved algorithm when computing the partial synchronization manifolds of networks with invasive coupling.

Introduction

Synchronization of coupled dynamical systems has been observed by the scientific community since centuries ago. In the
17th century, the Dutch scientist Christian Huygens recorded the synchronous motion of two pendulum clocks attached
to one beam [5], see Figure 1. During the recent decades, much attention has been driven to this topic by the need to
understand complex systems. Examples of synchronization can be found in fields from nature to engineering. Fireflies
flash at the same time instants [3]; geese fly in flock during migration [7]; and robots operate in cooperation [6], [8]. The
most trivial form of synchronous behavior is full synchronization, which typically refers to the state where all systems of
a network behave identically [12]. However, full synchronization is not always achievable. Networks may exhibit some
kind of incomplete synchronization due to weak interconnections between systems, large time-delays, etc. This type of
incomplete synchronization is called partial synchronization, which refers to the phenomenon that some but not all sys-
tems in networks synchronize [12]. Partial synchronization is often observed in large networks, for example, coherent
activity in parts of human brain neuron system, [4].

Figure 1: Original Huygens drawing, [5]

Partial synchronization is associated with the existence of partial synchronization manifolds, which are linear invariant
subspaces of the networked systems’ state space. In [10], [9], [11], [12], the existence of partial synchronization mani-
folds have been studied. Here, we focus on partial synchronization manifolds in networks of identical systems interacting
via linear diffusive time-delay coupling described by a weighted graph. In [12], a number of equivalent existence criteria
for partial synchronization manifolds for such networks are presented. One of these criteria exploits the block structure
of a reordered adjacency matrix to compute partial synchronization manifolds. An algorithm based on it is available in
[12]. However, the algorithm can be improved for the case of networks with invasive coupling (whose coupling term does
not vanish when the systems are synchronized). The row sums of the original adjacency matrix can be used as a priori to
limit the number of generated partitions for the criteria to check. Based on this idea, an improved algorithm to compute
all partial synchronization manifolds is developed in this paper.
The structure of the paper is as follows. The three subsequent sections introduce the network of systems, partial synchro-
nization manifolds and existence criteria of partial synchronization manifolds, respectively. These sections are based on
[12]. The section after them shows the improved algorithm for computing the partial synchronization manifolds. The next
section presents an example to demonstrate the algorithm. The final section includes the concluding remarks.
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Network of systems

In this paper, we adopt the settings of [12] by considering the networks of identical systems with linear diffusive time-
delay coupling. The networks are represented by directed weighted graphs G = (V, E , A), where

• V is a finite set of nodes with cardinality |V| = N ;

• E ⊂ V × V is the ordered set of edges, where the edge (i, j) points from node i to node j;

• A =
(
aij
)
∈ RN×N is the weighted adjacency matrix, where aij > 0 represents the weight of edge (i, j) when

(i, j) ∈ E , and aij = 0 when (i, j) /∈ E .

Figure 2 shows an example of one such graph G with the set of nodes

V = {1, 2, 3, 4, 5},

the set of edges
E = {(1, 3), (1, 5), (2, 1), (2, 4), (3, 2), (4, 3), (4, 5), (5, 2), (5, 3)}

and the adjacency matrix

A =


0 0 2 0 2
1 0 0 2 0
0 1 0 0 0
0 0 1 0 2
0 1 1 0 0

 .
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Figure 2: Example Network. Solid edges have weight of 1, dashed edges have weight of 2.

Every node of G consists of a dynamical system described by{
ẋi(t) = f(xi(t), ui(t))
yi(t) = h(xi(t))

(1)

where i ∈ V , state xi(t) ∈ Rn, input(s) ui(t) ∈ Rm, output(s) yi(t) ∈ Rm, function f : Rn × Rm → Rn and function
h : Rn → Rm. The systems (1) interact via either one of the following two types of coupling:

ui(t) =
∑
j∈Ni

aij [yj(t− τ)− yi(t)] (2)

or
ui(t) =

∑
j∈Ni

aij [yj(t− τ)− yi(t− τ)]. (3)

Here the set Ni is the neighbor set of node i ∈ V , i.e., Ni := {j ∈ V|(i, j) ∈ E}, aij are the entries of the weighted
adjacency matrix A and τ is the time-delay. These two types of couplings have a fundamental difference: Coupling (2) is
called invasive coupling as the coupling does not vanish when system i and its neighbors are synchronized; Coupling (3)
is called non-invasive coupling as the coupling vanishes (ui(t) ≡ 0) when system i and its neighbors are synchronized,
[12]. From the time being, we mainly focus on newtorks with invasive coupling.
Note that the graph considered here is simple and strongly connected. For a simple graph G, every pair of its nodes is
joined by at most one edge and it does not contain self-loops. For a strongly connected graph G, for each pair of nodes
u, v ∈ V , there exists a directed path from u to v and also a directed path from v to u, [2].
A solution is a partially synchronous solution of the coupled systems (1), (2) or (1), (3) if there exist i, j ∈ V with i 6= j
such that

xi(t) = xj(t), ∀t ≥ t0, (4)

whenever xi(t) = xj(t) for t ∈ [t0−τ, t0]. It is important to note that finding all possible partially synchronous solutions
is the first step in the study of partial synchronization in the network. The study of stability of these partially synchronous
solutions, which is necessary for partial synchronization in any real-world application, is not considered here.
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Partial synchronization manifolds

Consider a N × N permutation matrix Π. We associate Π with an equivalence relation ∼ on the set of nodes V , which
is such that i ∼ j if the ijth entry of Π is equal to 1. This equivalence relation defines a partition P of V . We denote
the number of parts of the partition P by K. We will refer to the parts of P as the clusters of the network. Furthermore,
note that K = dim ker(IN − Π). For example, for a graph G with V = {1, 2, 3, 4, 5}, the partition P = {P1,P2} =
{{1, 3, 4}{2, 5}} can be presented by the following permutation matrix

Π =


0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0

 .

Let C([−τ, 0],RNn) be the space of continuous functions that map the interval [−τ, 0] ⊂ R into RNn. Denoting the state
of the coupled network by xt ∈ C([−τ, 0],RNn),

xt(θ) :=


xt,1(θ)
xt,2(θ)

...
xt,N (θ)

 =


x1(t+ θ)
x2(t+ θ)

...
xN (t+ θ)

 , θ ∈ [−τ, 0],

i.e., the function segment x(t+ θ), θ ∈ [−τ, 0], conditions of the form (4) can then be expressed as

xt(θ) = (Π⊗ In)xt(θ), ∀θ ∈ [−τ, 0], ∀t ≥ t0, (5)

or xt ∈M(Π), ∀t ≥ t0 whenever xt0 ∈M(Π), where

M(Π) := {φ ∈ C([−τ, 0],RNn) |φ(θ) = col(φ1(θ), φ2(θ), . . . , φN (θ)),

φi(θ) ∈ Rn, i = 1, . . . , N, φ(θ) ∈ ker(INn −Π⊗ In)∀θ ∈ [−τ, 0]}

is the set of partially synchronous states induced by the permutation matrix Π. This brings us to the following definition.

Definition 1 [12] The setM(Π) with permutation matrix Π for which 1 < K < N is a partial synchronization manifold
for the coupled systems (1), (2), or (1), (3), if and only if it is positively invariant under the dynamics (1), (2), or (1), (3),
respectively.

Existence of partial synchronization manifolds

Given a partition P or corresponding permutation matrix Π, relabel the nodes of the network by clusters, i.e., the first k1
nodes belong to cluster 1, the second k2 nodes belong to cluster 2, and so on,

P̃ = {{1, . . . , k1}, {k1 + 1, . . . , k1 + k2}, . . .},

where k`, ` = 1, . . . ,K are the dimensions of the parts of P .
Mathematically, this relabeling can be done using another permutation matrix R, which we refer to as the reordering
matrix. For any N ×N permutation matrix Π with 1 < K < N , there always exists an N ×N reordering matrix R such
that

R>ΠR =


ΠC(k1)

ΠC(k2)
. . .

ΠC(kK)

 ,

K∑
`=1

k` = N, (6)

i.e. R>ΠR is a block diagonal matrix with K blocks ΠC(k`), each of which is a k` × k`-dimensional cyclic permutation
matrix.
Using R, we can construct the reordered adjacency matrix

R>AR =


A11 A12 · · · A1K

A21 A22 · · · A2K

...
. . . . . .

...
AK1 AK2 · · · AKK

 , Aij ∈ Rki×kj . (7)

We are now ready to give an explicit condition for existence of a partial synchronization manifold.
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Theorem 1 [12] Given an adjacency matrix A and a permutation matrix Π of the same dimension. Associate with Π a
reordering matrix R such that R>ΠR is of the form (6). Assume system (1) is left-invertible (the system input-output map
is injective), then the following statements are equivalent:

1) M(Π) is a partial synchronization manifold for (1) and (2), respectively (1) and (3);

2) all blocks, respectively all off-diagonal blocks, of the reordered adjacency matrix (7), partitioned in blocks of size
ki × kj according to (6), have constant row-sums.

In practice, networks may have physically distinct communication channels which have different time-delays and/or
interaction weights. Here, the latter case is discussed. The multiple time delays case is discussed in Appendix A.
Suppose a network G has r characteristic scalar interaction weights ω`, ` = 1, . . . , r, we can decompose it as

G(V, E , A) = G1(V, E1, ω1A1)⊕ · · · ⊕ Gr(V, Er, ωrAr), (8)

where A` are adjacency matrices with non-negative integer entries and E` is the set of edges corresponding to A`. Here
⊕ denotes a sum on graphs with the same set of nodes V , which joins the sets of edges and sums the adjacency matrices.
Therefore,

G1(V, E1, ω1A1)⊕ · · · ⊕ Gr(V, Er, ωrAr) = G
(
V,∪r`=1E`,

∑r

`=1
ω`A`

)
,

which means

A =

r∑
`=1

ω`A` (9)

and
E = ∪r`=1E`. (10)

Here, the numbers ω`, ` = 1, . . . , r are called basis weights.
Clearly, satisfying the row sum criteria in item 2 of Theorem 1 for all adjacency matrices A` simultaneously is a sufficient
condition for M(Π) to be a partial synchronization manifold. However, this condition becomes both sufficient and nec-
essary when the basis weights are rationally independent. The basis weights are rationally independent if and only if the
following implication holds for any integer numbers q1, . . . , qr

r∑
`=1

ω`q` = 0⇒ q` = 0 ∀` = 1, . . . , r. (11)

Then, we have the following condition for the aforementioned graphs.

Theorem 2 [12] Consider a graph G that decomposes as (8) and suppose that the numbers ω1, . . . , ωr are rationally
independent. Given a permutation matrix Π of appropriate dimension and associate with that Π a reordering matrix R
such that R>ΠR is of the form (6). Assume system (1) is left-invertible, then the following statements are equivalent:

1) M(Π) is a partial synchronization manifold for (1) and (2), respectively (1) and (3);

2) for each ` = 1, . . . , r, all blocks, respectively all off-diagonal blocks, of each block-structured matrices R>AlR,
partitioned in blocks of size ki × kj according to (6), have constant row-sums.

We remark that a number of equivalent existence conditions of partial synchronization manifolds are presented in [12].

An improved algorithm for computing all partial synchronization manifolds

An algorithm for identifying all partial synchronization manifolds has been presented in [12], which consists of two
ingredients: generating possible partitions, and checking the viability of a partition (i.e., checking whether or not it
corresponds to a partial synchronization manifold). For the latter, the algorithm checks the row-sum criteria of Theorem 1,
or 2. If all elements of A are integers or if A can be decomposed as A =

∑r
i=1 ω`A`, with A` containing integers and

(ω1, . . . , ωp) rationally independent, only row-sum tests on matrices with integer elements need to be made. In this case,
the detection algorithm can be carried out in exact arithmetic, without making conditions more stringent.
However, this algorithm scales badly with the network size due to its combinatorial nature (as we shall see, the number
of possible partitions of N systems grows with N in an exponential-like way). To restrict the computational cost, the
following is done:

• each row-sum test on a reordered adjacency matrix is aborted as soon as a block with non-constant row sums has
been detected;
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• for the case of coupling (2), a necessary condition for a viable partition is that each block of the (full) reordered
adjacency matrix has constant row sums, which indicates that, for any two nodes to be in the same part of a viable
partition, it is also necessary that their corresponding rows in the original adjacency matrix have the same row
sum. Therefore, we propose to start the algorithm by marking the nodes according to the row sums of the original
adjacency matrix. This will be used to restrict the number of possible partitions to be generated.

In the latter way, we improve the algorithm as originally proposed in [12] for computing partial synchronization manifolds
of networks interacting via invasive coupling. Thus, the first ingredient of the improved algorithm will contain two parts:
1) marking the nodes according to the row sums of the adjacency matrix; 2) generating possible partitions exploiting the
marking. The second ingredient (check partition variability by row sum criteria) remains the same as for the original
algorithm, therefore we will not present it here. To illustrate the proposed improvement for networks with invasive
coupling, we will briefly describe the two parts of the first ingredient and show an example in the next section.
The improved algorithm has been implemented in MATLAB and can be downloaded from
http://twr.cs.kuleuven.be/research/software/delay-control/manifolds/

Mark nodes by row sums
As mentioned, the nodes are marked according to the row sums of their corresponding rows in the adjacency matrix.
This is done by constructing a vector AR = [R1 · · ·RN ]> ∈ RN which indicates the (in)equality of the row sums of the
adjacency matrix A. Here, Ri = Rj if and only if the i-th row and j-th row of A have the same row sum. AR will be then
used to determine which nodes can be put into the same clusters during the generation of all possible partitions. In what
follows, we introduce the procedure to construct AR for both cases where the adjacency matrix A is treated as a single
matrix and where A is decomposed into multiple matrices according to (9).

When the adjacency matrixA is treated as one single matrix, the process to acquireAR is straightforward. If the adjacency
matrix A only contains integer elements, AR can be determined by simply calculating the row sums of A:

AR = A1N ,

where 1N is the N -dimensional vector with all entries equal to 1. If the adjacency matrix A contains non-integer ele-
ment(s), AR can be obtained by comparing the row sums of A using a predefined tolerance.
Denote the number of distinct elements of AR by d. If d = N , no partial synchronization manifolds exist. The algorithm
will stop and return the result stating no partial synchronization manifolds exist.

When the adjacency matrix A is decomposed in the form of (9), some extra effort is needed to acquire AR.
First, using the same method above, we can obtain the vector A`,R indicating the (in)equality of the row sums of each
matrix A` (` = 1, 2, . . . , r):

A`,R = [R`,1 · · · R`,N ]>.

Again, R`,i = R`,j if and only if the i-th and j-th rows of the matrix A` have the same row sum.
Second, find the common row sum indicator AR for all adjacency matrices. In AR, Ri = Rj if and only the i-th and j-th
rows of all matrices A`, ` = 1, . . . , r have the same row sum.
Start with the 1st row of the matrices. For the 1st row, construct the following vectors for l = 1, . . . , r:

S`,1 =


s`,1
s`,2

...
s`,N

 with s`,i =


1 for i = 1

1 for i = 2, . . . , N if Rl,i = Rl,1

0 otherwise
.

Then, these r vectors are combined into one vector C1 by element-wise multiplication

C1 =


1∏r

`=1 s`,2
...∏r

`=1 s`,N

 =


1
c1,2

...
c1,N

 .
Here, the i-th row and the 1th row in every adjacency matrix (A1, A2, . . . , Ar) have the same row sum if and only if
c1,i = 1 for i = 2, . . . , N .

For rows i = 2, . . . , N , the following procedure is used to obtain the vectors Ci.
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Algorithm 1: Calculate Ci for AR

Input: A`,R, ` = 1, . . . , r and C1

Output: Ci, i = 1, . . . , d
d← 1;
q ← 2;
while q ≤ N do

if
∑d

i=1 ci,q 6= 0 then
q ← q + 1;
continue;

else
d← d+ 1 ;
construct the following vectors for ` = 1, . . . , r:

S`,d =


s`,1
sl,2

...
s`,N

 with sl,i =


1 for i = q

1 for i = 1, . . . , q − 1, q + 1, . . . , N if Rl,i = Rl,q

0 otherwise
;

combine these r vectors into one vector Cd by element-wise multiplication:

Cd =



∏r
`=1 s`,1

...∏r
`=1 s`,q−1

1∏r
`=1 s`,q+1

...∏r
`=1 s`,N


=



cd,1
...

cd,q−1
1

cd,q+1

...
cd,N


;

q ← q + 1 ;
end

end

Collect all Ci, i = 1, . . . , d in one matrix C

C =
[
C1 C2 · · · Cd

]
, where d ≤ N.

Note that for d = N , no partial synchronization manifolds exist. The algorithm will stop and return the result stating no
partial synchronization manifolds exist.
Finally, multiply C with the vector v = [1 2 · · · d]> to obtain AR:

AR = Cv = [R1 · · ·RN ]>.

AR will then be exploited in next step to limit the number of partitions.
We remark that the procedure presented here can be also used for networks which are decomposed due to multiple time
delays, see Appendix A for details.

Generate possible partitions
Each partition of a network with N systems is presented by a N -digit code d1 · · · di · · · dN , following the convention
in [12]. Table 1 graphically explains the generation of all possible partition using this coding system in the original
algorithm. System 1 always has code 0. When adding a second system, there will be two possible partitions: one coded
by 00 when System 1 and 2 belong to the same cluster, the other one coded by 01 when System 2 belongs to a new cluster.
Now we add a third system. Based on every possible partition of System 1-2, we can generate the partitions of System
1-3. Starting with partition 00, we can put the third system into the same cluster of System 1 and 2 or a new cluster,
coded by 000 or 001 respectively. Similarly, for partition 01, we have three possibilities: 010 (System 1 and 3 in the same
cluster), 011 (System 2 and 3 in the same cluster) or 012 (System 3 in a new cluster). Continuing this procedure, we can
generate all possible partitions for networks with N systems. Note that the number of partitions generated in this way is
known as Bell number. In combinatorial mathematics, Bell numbers {B0, B1, . . .} introduced in [1] count the numbers
of partitions of a set. The N -th Bell number BN is the number of partitions of a set of size N . Starting with B0 = 1, the
Bell numbers can be generated by using the following recurrence relation, [13]:

Bn =

n−1∑
k=1

(
n− 1
k

)
Bk, for n ≥ 1,

where
(
n− 1
k

)
define the binomial coefficients. It can be shown that the Bell numbers increase in a exponential-like way

with N . The first few Bell numbers are 1, 1, 2, 5, 15, 52, 203, 877, 4140, . . .
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To reduce the number of partitions, we impose the row sum requirements by exploiting the vector AR during partition
generation for networks with coupling (2). System 1 still gets code 0. However, when adding subsequent systems, the
possibilities will be restricted by the row sum requirements. AR is used to determine where to put the newly added
systems, see below.

Algorithm 2: Generate possible partitions

Input: AR = [R1 · · · RN ]>

Output: set of parition codes for systems {1, . . . , N}
let D1 = {0} be the set of partition codes for system {1} (d1=0);
for i=2,. . . ,N do

set the set of partition codes for systems {1, . . . , i} empty;
foreach element in the set of partition codes for systems {1, . . . , i− 1} do

retrieve d1, . . . , di−1;
compute the set Di = {dj | Rj = Ri, j = 1, . . . , i− 1}︸ ︷︷ ︸

System i allowed in the same clsuters of other systems due to same row sums

∪ {max(d1, d2, . . . , di−1) + 1}︸ ︷︷ ︸
System i in a new clsuter

;

append every element of Di to the current code d1 · · · di−1 and add all corresponding codes d1 · · · di in the set of
partition codes for systems {1, . . . , i};

end
end

System Systems Systems Systems · · ·
1 1,2 1,2,3 1,2,3,4
0 00 000 0000 · · ·

0001
001 0010

0011
0012

. . .
01 010 0100

0101
0102

011 0110
0111
0112

012 0120
0121
0122
0123

. . .

Table 1: Generating the set of all partitions of a number of systems using the original algorithm, [12].

When the procedure reaches i = N , we obtain all possible partitions compliant to the row sum requirements. The
viabilities of these partitions will then be checked using the row sum criteria from Theorem 1 or 2.
Remarkably, the number of possible partitions for networks with coupling (2) generated by the improved algorithm can
be inferred from the structure of AR.
Suppose AR has d distinct elements, i.e., the adjacency matrix A has d distinct row sums. Denote ki as the number of
elements with equal values. The number of partitions NP generated by the new procedure is

NP =

d∏
i=1

Bki . (12)

Here Bki
is the number of partitions of a set of size ki, i.e., the ki-th Bell number.

This can also be explained in a more intuitive way. Let us group the nodes according to the row sums of A and denote
this partition as P̄ = {P̄1, . . . , P̄d}. Then ki, i = 1, . . . , d is the number of nodes in Pi. For nodes to be in same part in a
viable partition, it is necessary for them to be in the same group of P̄ . Therefore, the allowable partitions can be generated
by:

• Generate all partitions of sub-networks of P̄i and denote the partition set as D̄i;

• Obtain the partitions of the whole network by combining these partitions of sub-networks, i.e., D̄1×D̄2×· · ·×D̄d.
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Since |D̄i| = Bki , the total number of partitions (|D̄1 × D̄2 × · · · × D̄d|) equals to
∏d

i=1Bki . Obviously, the follow
inequality always holds for d ≥ 2

BN >

d∏
i=1

Bki , (13)

where N =
∑d

i=1 ki and N, ki ∈ Z+. This supports the conclusion that in many cases the improve algorithm generates
fewer partitions than the original algorithm.

Example

The example here shows the computation of all possible partitions of a network with 2 different weights (invasive coupling
type) using the improved algorithm. We use the same adjacency matrices from an example in [12]. Below are the
decomposed adjacency matrices of the network.

A1 =



0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1
1 1 0 0 0 0 1 0
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0


, A2 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 1 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0


.

Calculate row sums of all matrices

A1,R =
[
2 1 3 3 2 1 3 1

]>
,

A2,R =
[
0 1 1 1 3 0 1 0

]>
.

Combine row sum condition of all matrices
Row 1

S2,1 =
[
1 0 0 0 1 0 0 0

]>
,

S1,1 =
[
1 0 0 0 0 1 0 1

]>
,

C1 =
[
1 0 0 0 0 0 0 0

]>
.

Row 2

S1,2 =
[
0 1 0 0 0 1 0 1

]>
,

S2,2 =
[
0 1 1 0 1 0 1 0

]>
,

C2 =
[
0 1 0 0 0 0 0 0

]>
.

Row 3

S1,3 =
[
0 0 1 1 0 0 1 0

]>
,

S2,3 =
[
0 1 1 1 0 0 1 0

]>
,

C3 =
[
0 0 1 1 0 0 1 0

]>
.

Row 4 is skipped as c3,4 = 1 in C3.
Row 5

S1,5 =
[
1 0 0 0 1 0 0 0

]>
,

S2,5 =
[
0 0 0 0 1 0 0 0

]>
,

C4 =
[
0 0 0 0 1 0 0 0

]>
.

Row 6

S1,6 =
[
0 1 0 0 0 1 0 1

]>
,

S2,6 =
[
1 0 0 0 0 1 0 1

]>
,

C5 =
[
0 0 0 0 0 1 0 1

]>
.
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Row 7 is skipped as c3,7 = 1 in C3.
Row 8 is skipped as c5,8 = 1 in C5.
So,

C =
[
C1 C2 C3 C4 C5

]
=



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
0 0 0 0 1


.

Multiply C with v = [1 2 3 4 5]>, yields

AR = Cv =
[
1 2 3 3 4 5 3 5

]>
Therefore, we can conclude:

• In both A1 and A2, row 3, row 4 and row 7 have the same row sum;

• In both A2 and A2, row 6 and row 8 have the same row sum.

Generate possible partitions

System Systems Systems Systems Systems Systems Systems Systems
1 1,2 1,2,3 1,2,3,4 1,2,3,4,5 1,2,4,5,6 1,2,3,4,5,6,7 1,2,3,4,5,6,7,8

d1 ∈ {0} d2 ∈ {1} d3 ∈ {2} d4 ∈ {2, 3} d5 ∈ {3} d6 ∈ {4} d7 ∈ {2, 5} d8 ∈ {4, 5}
0 01 012 0122 01223 012234 0122342 01223424

01223425
d8 ∈ {4, 6}

0122345 01223454
01223456

d5 ∈ {4} d6 ∈ {5} d7 ∈ {2, 3, 6} d8 ∈ {5, 6}
0123 01234 012345 0123452 01234525

01234526
d8 ∈ {5, 6}

0123453 01234535
01234536
d8 ∈ {5, 7}

0123456 01234565
01234567

Table 2: Generating the set of all partitions of 8 systems with row sum restrictions.

Table 2 shows the process of partition generation using the improved algorithm. As can be seen from it, there are only 10
partitions generated, while the original algorithm generates B8 = 4140 (the 8th Bell number) partitions.
Recall that the number of possible partitions can be calculated from the structure of AR. In this example, we have

AR =
[
1 2 3 3 4 5 3 5

]>
.

Re-arrange the entries by their values, we have

ÃR =
[
1 2 3 3 3 4 5 5

]>
,

therefore, the total number of possible partitions equals to B1 × B1 × B3 × B1 × B2 = 10, where Bi represents the ith
Bell number. In fact, the partitions generated by the improved algorithm is a subset of those generated by the original
algorithm. Thereby, there are fewer partitions available for performing the row sum test, thus saving computational effort.

Concluding Remarks

In this paper, we have presented an improved algorithm to calculate the partial synchronization manifolds M(Π) in
networks of systems (1), in particular, with invasive coupling time-delay coupling (2). Using this algorithm, the computa-
tional cost can be largely reduced as the number of partitions generated to test is greatly smaller compared to the original
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algorithm proposed in [12]. In fact, the number of the generated partitions is related to the distribution of row sums of the
adjacency matrix. Clearly, no partial synchronization manifolds exist when all rows of the adjacency matrix have distinct
row sums for the system (1) with invasive coupling (2). In this case, the algorithm stops and returns the corresponding
result. Finally, we remark that the algorithm can also be applied to networks with multiple time delays.
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Appendix A: Multiple time delays

In this appendix, we discuss the case where networks have multiple time delays. For the case of multiple time-delays, the
network can be decomposed analogously to (8). Here, we also adopt the settings from [12]. Suppose the coupling has p
distinct delays. The corresponding coupling functions are

ui(t) =
∑
j∈Ni

aij [yj(t− τij)− yi(t)] (14)

or
ui(t) =

∑
j∈Ni

aij [yj(t− τij)− yi(t− τ)], (15)

where τij ∈ {τ1, τ2, . . . , τp} with 0 < τ1 < τ2 < . . . < τp = τ . Define the matrices A`, ` = 1, . . . , r as follows

Ã` = (ã`,ij), with ã`,ij =

{
aij if τij = τ`,

0 otherwise.
(16)

Therefore, the network G can be decomposed as:

G(V, E , A) = G̃1(V, Ẽ1, Ã1)⊕ · · · ⊕ G̃p(V, Ẽr, Ãp), (17)

where Ẽ` ⊂ V × V presents the set of edges corresponding to τ`, ` = 1, . . . , p.
Then, we have the following condition for existence of partial synchronization manifolds for this type of networks.

Theorem 3 [12] Consider a graph G that decomposes as (17). Given a permutation matrix Π of appropriate dimension
and associate with that Π a reordering matrix R such that R>ΠR is of the form (6). Assume system (1) is left-invertible,
then the following statements are equivalent:

1) M(Π) is a partial synchronization manifold for (1) and (2), respectively (1) and (3);

2) for each ` = 1, . . . , p, all blocks, respectively all off-diagonal blocks, of each block-structured matrices R>Ã`R,
partitioned in blocks of size ki × kj according to (6), have constant row-sums.

By comparing Theorem 2 with 3, it can be concluded that we can use almost the same algorithm to compute the partial syn-
chronization manifolds of networks with multiple time delays. The difference is that when applying the Algorithm 1 for
Ã1, ..., Ãp, one must take into account that the entries of these matrices might be not integer valued, henceA1,R, . . . , Ap,R

should be constructed with some prescribed tolerance. A further decomposition as (8) is possible if the rational depen-
dency structure of the weights permits. If all Ãl containing non-integer element(s) can be decomposed in form of (9) with
rationally independent basis weights, the algorithm can still be carried out in exact arithmetic.
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