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Summary. Chain fountains are known since long time, and many efforts have bken ta model and to explain the dynamics of
such a chain fountain. A chain consists of many small elements startimganoinertial beaker, moving upwards by forming an arc
and coming to an inertial position again after a rather long vertical dist#wsthe chain elements are all connected by a bearing type
structure, they all have to go with the same velocity v. In the following we stwaisider the stationary case and assume small chain
elements (Fig. 1).

Modeling

As the problem is known since long time, famous colleagues lizalt with it, so for example Painleve [5] or Routh
[7], who consider a continuous approach as many scientides/t Airy [1] solved a problem connected with underwater
cables in the 19th century, where the cable connectionsdegt\izurope and the US became important and feasible [8].
Some remarkable contributions come from Biggins [2], Ga[l], Grewal[4] and Virga [9], to cite only a few.

This paper presents a multibody approach (MBS), and, byyappa limiting process also a belt approach. Geometry and
forces are depicted in Figure 2, from which we derive the ofelhg equations of motion:
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The frictional force writesFr; = u(signa)F;, and the centrifugal

effects with the forcello; = Am% and k; = Ri = (%)i, are
included in the acceleration terms. The initial conditi@me F, =
ko(M?), a = ag, B = Bo, The curvatures; depends on the change
of the anglex with the trajectory coordinate s. The form of the chain
Figure 1: Chain Fountain and Chain Structure fountain requires:; < 0. The factork, takes impact losses during the
pick-up process into account [9]. For the very small beadh thieir connection bars we discretize witls (=~ As ~
d;, dxr = d;cosB;, dy =~ d;sinf;, k; = (%)i R (%)i). Introducing the accelerations = —wvd;sina;, §; =
+vd;cosa; and the abbreviationg (= Aﬂ;g, w; = g%)’ rearranging equations (1) and regarding the discrétizaive
come out with
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Knowing Aa; we find from the equations of motion algp. Moreover, within the framework of these approximations
we can derive a force relation of the reduced forfn4 f;_1 + sinf;). Summing up this gives the well-known result
(Fg — Fy = AgH). The difference of the two ground forcé%, and Fj is the weight of the chain part below the arc.

We go now from the discretized solution with all details of tthain to a continuous solution with no details by applying
the limiting processA\s, ~ d; — ds). This generates mathematically a continuous belt frondikerete chain with
finite beads. The equations of motion (1) can then be put imra feriting

- F)=—(Z = (s N O]
o(1-F)= (U2)cosa, F' = —l—(vz)sma, with  F' = o2 () = 5 3
which have the solutions
F=1-(1- FO)(CCZO;?), tana = tanag —qs  for (ap > a >0), leftfountain arg
tana = —q(s — so) for (0> a > ag), rightfountain arc (4)

which is another representation of the well-known caten@onsidering work, energy and power gives the same relation
as just mentioned,namely’t — Fy =~ \gH). The centrifugal forces over the complete fountain haveatoy the whole
chain together with the forces at the ground. With Figureaff) the results above we get the balance
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The above equations allow the solutiodg;(= 0, y = -’jj—’;' = (£298) 1 <0)
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- body (i+1)

geometrical properties

di H a
a; = Bi+7i
Bi = %(ai + aiq1)
vi = z( — aiya)

d; = a + 2dcos;
Tit1 = z; + d;icosf;
Yit1 = Yi + disinf;

Figure 2: Chain Model - Geometry and Forces

Results and Conclusions

In addition to the calculations applying the dicretized el continuous models some measurements have been per-
formed. The comparisons are good and confirm theory.

In some parts of the literature we find for the ra(tig) ~ —0.14, which according to the above equations corresponds
to x &~ —0.875. The magnitudey depends, as all other parameters too, only on the angleslatipiand put-down,

(x = ’j}—’j = ($252E) — 1 < 0). Therefore a ratigZ) ~ —0.14 can only be realized by an angle rafig22) ~ (0.125,

cosag

which cannot be controlled precisely in experiments. Fadgaiffirstly depicts a typical chain fountain with the relevant
parameters, and it illustrates secondly these experinagwtsheories, where the rataé}) ~ —0.14 is not given.

FOUNTAIN DATA
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Figure 3: Results for the MBS and belt approximations compared withuneragntsieft side a typical chain fountain with the most
important parametersjght side the chain fountain heights with black lines thg (= %)-graphs, black stars MBS-approach, blue
circles belt approximation, red stars measurements (scaling ragiu®r,—o))
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The dynamics of pick-up and put-down is the key to the moticthechain. Looking at the different approaches, there are
three facts without doubts: Firstly, at the pick-up and goivn points we have an impulsive character of the dynamical
processes, which must be modeled accordingly. Secondiéysioin force starts at pick-up and disappears at put-down,
acting on the whole fountain during motion. Thirdly, all apaches confirm the somehow surprising behavior of chain
systems with variable masses including still some unsgbretilems.

Considering only one chain element we have to acceleragefritnin v=0 to v=v coming out with an impulsive force
Fy = ko(A\v?), which agrees with many results of the literature. The coieffit , is an impact coefficient. With this
approach realistic solutions are possible.
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