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Summary. Chain fountains are known since long time, and many efforts have been taken to model and to explain the dynamics of
such a chain fountain. A chain consists of many small elements starting from an inertial beaker, moving upwards by forming an arc
and coming to an inertial position again after a rather long vertical distance.As the chain elements are all connected by a bearing type
structure, they all have to go with the same velocity v. In the following we shallconsider the stationary case and assume small chain
elements (Fig. 1).

Modeling

As the problem is known since long time, famous colleagues have dealt with it, so for example Painleve [5] or Routh
[7], who consider a continuous approach as many scientists today. Airy [1] solved a problem connected with underwater
cables in the 19th century, where the cable connections between Europe and the US became important and feasible [8].
Some remarkable contributions come from Biggins [2], Calkin [3], Grewal[4] and Virga [9], to cite only a few.
This paper presents a multibody approach (MBS), and, by applying a limiting process also a belt approach. Geometry and
forces are depicted in Figure 2, from which we derive the following equations of motion:
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Figure 1: Chain Fountain and Chain Structure

∆mẍi =Ficosβi − Fi−1cosβi−1 + FTisinβi − FT,i−1sinβi−1

∆mÿi =Fisinβi − Fi−1sinβi−1 − FTicosβi + FT,i−1cosβi−1

−∆mg. (1)

The frictional force writesFTi = µ(signα̇)Fi, and the centrifugal
effects with the forceFCi = ∆m v2

Ri
and κi = 1

Ri
= (dα

ds
)i, are

included in the acceleration terms. The initial conditionsareF0 =
k0(λv

2), α = α0, β = β0, The curvatureκi depends on the change
of the angleα with the trajectory coordinate s. The form of the chain
fountain requiresκi < 0. The factork0 takes impact losses during the

pick-up process into account [9]. For the very small beads with their connection bars we discretize with (ds ≈ ∆s ≈

di, dx ≈ dicosβi, dy ≈ disinβi, κi ≈ (∆α
∆s

)i ≈ (∆α
d
)i). Introducing the accelerations̈xi = −vα̇isinαi, ÿi =

+vα̇icosαi and the abbreviations (fi =
Fi

∆mg
, wi =

v2

gdi
), rearranging equations (1) and regarding the discretizations we

come out with

∆αi ≈ −

( cosαi + µαsinαi

wi − fi−1 −
1
2sinαi +

1
2µαcosαi

)

. (2)

Knowing ∆αi we find from the equations of motion alsofi. Moreover, within the framework of these approximations
we can derive a force relation of the reduced form (fi ≈ fi−1 + sinβi). Summing up this gives the well-known result
(FE − F0 ≈ λgH). The difference of the two ground forcesFE andF0 is the weight of the chain part below the arc.
We go now from the discretized solution with all details of the chain to a continuous solution with no details by applying
the limiting process (∆si ≈ di → ds). This generates mathematically a continuous belt from thediscrete chain with
finite beads. The equations of motion (1) can then be put in a form writing

α′(1− F̄ ) = −(
g

v2
)cosα, F̄ ′ = +(

g

v2
)sinα, with F̄ =

F

λv2
, (.)′ =

d(.)

ds
, (3)

which have the solutions

F̄ = 1− (1− F̄0)(
cosα0

cosα
), tanα = tanα0 − qs for (α0 ≥ α ≥ 0), left fountain arc,

tanα = −q(s− s0) for (0 ≥ α ≥ αE), right fountain arc, (4)

which is another representation of the well-known catenary. Considering work, energy and power gives the same relation
as just mentioned,namely (FE − F0 ≈ λgH). The centrifugal forces over the complete fountain have tocarry the whole
chain together with the forces at the ground. With Figure (2)and the results above we get the balance

N
∑

i=1

FCicosαi =

N
∑

i=1

∆mg − FEsinαE + F0sinα0, sE ≈ (1− k0)(sinα0 − sinαE)(
v2

g
) +HsinαE . (5)

The above equations allow the solutions (FE = 0, χ = gH
v2 = ( cosαE

cosα0
)− 1 < 0)

k0 = −χ, (
sEg

v2
) = −χ+ 2(

hg

v2
), (

sE

H
) = −1 + (

2

χ
)(
hg

v2
), (

hg

v2
) = 1 + χ, (

h

H
) = (

1 + χ

χ
). (6)
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Figure 2: Chain Model - Geometry and Forces

Results and Conclusions

In addition to the calculations applying the dicretized andthe continuous models some measurements have been per-
formed. The comparisons are good and confirm theory.
In some parts of the literature we find for the ratio( h

H
) ≈ −0.14, which according to the above equations corresponds

to χ ≈ −0.875. The magnitudeχ depends, as all other parameters too, only on the angles at pick-up and put-down,
(χ = gH

v2 = ( cosαE

cosα0
)− 1 < 0). Therefore a ratio( h

H
) ≈ −0.14 can only be realized by an angle ratio( cosαE

cosα0
) ≈ 0.125,

which cannot be controlled precisely in experiments. Figure 3 firstly depicts a typical chain fountain with the relevant
parameters, and it illustrates secondly these experimentsand theories, where the ratio( h

H
) ≈ −0.14 is not given.
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Figure 3: Results for the MBS and belt approximations compared with measurements:left side a typical chain fountain with the most
important parameters;right side the chain fountain heights with black lines the (h

H
= 1

7
)-graphs, black stars MBS-approach, blue

circles belt approximation, red stars measurements (scaling radiusr = (2rα=0))

The dynamics of pick-up and put-down is the key to the motion of the chain. Looking at the different approaches, there are
three facts without doubts: Firstly, at the pick-up and put-down points we have an impulsive character of the dynamical
processes, which must be modeled accordingly. Secondly, a tension force starts at pick-up and disappears at put-down,
acting on the whole fountain during motion. Thirdly, all approaches confirm the somehow surprising behavior of chain
systems with variable masses including still some unsolvedproblems.
Considering only one chain element we have to accelerate this from v=0 to v=v coming out with an impulsive force
F0 = k0(λv

2), which agrees with many results of the literature. The coefficientk0 is an impact coefficient. With this
approach realistic solutions are possible.
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