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Symmetry-induced dynamic localization in lattice structures
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Summary. Internal symmetry in lattice structures may give rise to stationary compact solutions, even in the absence of disorder or
nonlinearity. These compact solutions are related to the existence of flat dispersion curves (bands). Nonlinearity can be a destabilizing
factor for such compactons.

Mechanical models and dispersion analysis

Two mechanical systems in which configurational symmetry results in existence of a flat dispersion curve (band), are
presented in Fig. 1: a system of massless boxes connected by linear springs with two identical oscillators in each box
in Fig. 1(a), and a system of two identical uniform cross-linked chains with vibro-impact on-site potential in Fig 1(b).
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Fig.1 Mechanical systems having flat dispersion bands

In the linear regime, where the in-box potential in the system in Fig.1(a) is harmonic, and the displacements of the
masses in the system of close cross-linked chains in Fig. 1(b) are small enough to avoid impacts, dispersion analysis
shows that both systems possess a flat dispersion band, as demonstrated in Fig. 2.
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Fig.2 Dispersion bands (a) of the system in Fig. 1(a) and (b) of the system in Fig. 1(b) with the flat bands drawn in dashed lines.

As noted in [1], modes corresponding to the flat bands are spatially detached, or perfectly compact. For the system in
Fig. 1(a) it is anti-synchronous motion of the two oscillators in just on box, with other masses at rest, and experiencing
zero net force from the box with the internal motion. For the system in Fig. 1(b), it is anti-synchronous motion of one
mass of the upper chain and the mass just below it in the lower chain, in which case zero net force is exerted on all
other masses if there are at rest and positioned uniformly.

Nonlinear regime
In the nonlinear regime, compact solutions may still exist, yet their stability may be lost, depending on parameters.

First system

The chain of massless boxes given in Fig. 1(a) when the in-box linear interaction forces are augmented by cubic terms,
still admits a compact solution, if compact anti-symmetric initial conditions are assumed, due to the oddness of the
cubic function. If, however, perturbation to antisymmetric compact initial conditions is introduced, it may or may not
grow. Linear stability is performed rigorously for the case of a single box-on-a-spring. The solution for the
antisymmetric mode (distance between two in-box masses) in this case is given by the 5th elliptic Jacobi function 'sd’,
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and where p is the cubic force term pre-factor and Yy is the amplitude of synchronous motion having the same energy

as the anti-synchronous one. The linear stability problem of the anti-synchronous solution is given by a Hill equation,
where the Hill function is given by the Fourier series of the following function:
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Since the 5™ Jacobi function has a known Fourier series, the function A(f) can be Fourier-decomposed using first
analytical convolution and then numerical deconvolution by solution of a linear system, as done in [2]. Hill analysis
then shows the emergence of an instability tongue, with stable surroundings, as given in Fig.3(a). Consecutive numerical
integration of a finite chain (of N=10 boxes) with the cubic internal force augmentation, taking parameters both from
the unstable tongue and the stable surroundings, as calculated for a single box, reveals the existence of stable compact
solutions in the considered nonlinear chain. Illustration of unstable/stable compactons in a chain is given in Fig. 3(b-c).

Anti-synchronous Mode Linear Stability Boundaries
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Fig.3 Stability diagram for N=1 (a), anti-synchronous mode history in the box with initial compacton for N=10 for k/ko in the
N=1-instability tongue (ko=20k) (b), and stable compacton for ko=2k (c). yi(¢) is relative centre-of-mass displacement of the i’ box.

Second system

When the displacements of the masses in the cross-linked chain depicted in Fig. 1(b) are large enough, impacts occur,
rendering the system non-smoothly nonlinear. A perfectly compact anti-synchronous periodic solution still exists, since
sharp impacts only change the signs of the velocities of two masses, which happens simultaneously, and thus the

positions stay antisymmetric at all times leading to external force cancellation for the compacton. This impacting
solution takes the form:
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where o is now the frequency of the periodic motion, measured in units of (k/m)"? and {} . is the fractional part of a
number. The stability of this solution is examined by Floquet theory for N>>1. The monodromy matrix is constructed
analytically, using the notion of a saltation matrix, applying the approach as in [3], twice consequently, once for each
impact. In the small kqnear/k limit, where asymptotic analysis of a single element produces a good estimate, numerical
stability analysis reveals the existence of a stable region in the frequency — stiffness ratio plane, as shown in Fig. 4.
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Fig.4 Stability map showing the existence of stable compactons for intermediate frequencies, along with an asymptotic estimate.
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