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Abstract. The algorithm of numerical research of a plane problem of the viscous fluid flow in the domain between two arbitrarily moving 
cylinders of an arbitrary cross-section is constructed. The Reynolds number is assumed to be small and the equations of the fluid motion 
are solved using the linear Stokes approximation. The biharmonic stream function is required. The Goursat representation and a 
modification of the boundary elements method are used to find it. The test examples confirm the high accuracy of the algorithm. 
 
The studied problem has important applications in the theory of hydrodynamic lubrication in the theory of 
hydrodynamic stability and is also of interest for solving the problem of mixing. 
The simplest solution can be obtained in the case of axisymmetric rotation of the concentric cylinders with constant 
angular velocities [1]. The exact solution for the case of the rotating eccentric cylinders can be obtained in the bipolar 
coordinates [2], [3]. In [4] the exact solution in the case of arbitrary motion of the eccentric cylinders is constructed. 
This report proposes the algorithm of viscous fluid flow plane problem numerical investigation in the domain between 
two arbitrarily moving cylinders of an arbitrary cross-section. 
 

Setting the problem and transition to the system of boundary equations 
 
Hydrodynamic setting of the problem and the stream function 
Let the fluid be contained between two cylindrical bodies of an arbitrary cross-section: in the plane z x iy  the 
contour 0D  is located inside the contour 1D . The components of velocity of the solid body point are developed of the 

components of the translational ( ,x yv v ) and the angular velocity : x x yV v  , y y xV v   , where x x x   , 

y y y   ,  ,x y   are the coordinates of the point through which the axis of rotation passes.  
If the fluid is incompressible, then the components of its velocity are expressed by the stream function which in the 
Stokes approximation satisfies the equation 2 0   , and it is possible to have a problem with the boundary conditions: 
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where ( )kx x s , ( )ky y s  are the boundary equations kD , kC  are the undefined constants of integration. 
 
The Goursat theorem and integral representations of harmonic functions 
The Goursat theorem: any biharmonic in the domain D function   can be expressed through two harmonic in the 
domain D  functions   and  : ( , ) ( , )x y x x y     . The boundary conditions (1) take the form: 
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Harmonic in D  functions   and   satisfy the following conditions, which can be used to find the constants 0C , 1C : 
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Each of the harmonic functions   and   satisfies the boundary integral equations of the form: 

   0 1( ) ( ) 2 ( ) , ( ) ( ) 0 ,n nA s B s s M D A s B s M D             (4) 

where A  and B  are the linear operators: 
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The equations (2) and (3) are the system of eight equations with unknown functions ( )k , ( )k , ( )k
n , ( )k

n  ( 0,1k  ). 
 

The numerical solution 
 
For the numerical computation a modification of the boundary element method, the scheme without saturation 
described in details in [5], is used. The sampling of contours by the finite number of points (0)

iM  ( 01,i N ), (1)
iM  
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( 11,i N ) is introduced. Then the system of boundary equations (2), (4) reduces to a system of linear algebraic 

equations for the values of functions ( )k , ( )k , ( )k
n , ( )k

n  ( 0,1k  ) at the points ( )k
iM . The sampled conditions (3) 

are required to be attached to the system to determine the constants 0C , 1C .  
By solving the resulting system, it is possible to determine the unknown boundary values of the required functions, that 
allow to determine the approximate value of the biharmonic stream function   at any point of the domain D . 
 

The test examples 
 
The viscous fluid flow between two rotating concentric circular cylinders 
Let 0  be a radius of an internal cylinder (with angular velocity of 0 ) and 1  be a radius of an external cylinder (with 
angular velocity of 1 ). The exact solution of this problem is described in [1], for example. In fig. 1 the red solid line 
shows the plot of the exact absolute value of the velocity depending on  , and the blue dashed line is the plot of the 
corresponding velocity found numerically ( 0 1200, 400N N  ). 

       
Figure 1. The plots of the velocity of the viscous fluid as function of the polar radius 

 
The viscous fluid flow between two rotating eccentric circular cylinders 
Let the cylinders centers be located on the axis Ox , and the distance between them be equal to x̂ . To obtain an exact 
analytical solution the problem is considered in the polar coordinates [3], [4]. In fig. 2 it is shown a comparison of the 
results of the numerical and analytical solutions for 0 40N  , 1 100N  . 

               
          (a): the exact solution         (b): the numerical solution 

Figure 2. The streamlines const   for 0 0.2  , 1 1  , 0 5  , 1 0.2   , ˆ 0.4x   
  

Conclusions 
 
It is clear from the presented plots that there is a good agreement between the numerical and exact results inside the 
domain even for small values of 0N  и 1N . Thus the suggested algorithm for the calculation of the viscous fluid flow 
between two arbitrarily moving cylinders of an arbitrary cross-section may be considered effective and precise. 
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