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Summary. A novel stochastic linearization approach is proposed for predicting periodic and/or chaotic response of Duffing oscillator 
subjected to sinusoidal and weak-noise excitations. The present approach is realized by developing a modified statistical linearization 
method and incorporating an identification index, which is an incremental time average of variance response. Based on the modified 
statistical linearization model, the mean equation retains the same dynamic behaviour of the Duffing oscillator, and the linearized 
variance equation plays a role to monitor the generation of random behaviour in chaotic response. The parametric space of nonlinear 
response estimated by the present method is validated by employing Ueda parametric space as well as Lyapunov exponent and Monte 
Carlo simulations. 
 

Introduction 
 
In engineering applications, statistical linearization with Gaussian density, among the approximation methods, has 
been the mostly employed for analyzing the response behavior of general non-linear stochastic systems. Gaussian 
linearization method has been extended to investigate the regular cyclostationary response of a Duffing oscillator 
subjected to both sinusoidal and white noise excitations [1]. For the stochastic Duffing oscillator, the long-time 
response can be in a regular or irregular motion. Recently, a manifold independent method of utilizing an invariant 
measure of density response through Frobenius-Perron operator has been proposed for investigating chaotic response 
[2]. Regarding stochastic formulation of Frobenius-Perron operator, an invariant measure as the time average of 
density response can be obtained by solving Fokker-Planck-Kolmogorov (FPK) equation [2-4]. In literature, the 
investigation of the chaotic response of the stochastic Duffing oscillator is relied on numerical solution of FPK 
equation. However, the numerical solution cannot afford parametric relations for interpreting the physical mechanism 
in noisy chaotic response. The development of an approximate analysis through density response is essential for 
investigating chaotic response. 
 

Modified statistical linearization 

For the Duffing oscillator subjected to both sinusoidal and white noise excitations, at first, the nonlinear function in 
spring force will be linearized by following statistical linearization approach. Then, the mean and covariance 
propagation equations are derived from the linearized dynamic equation. Since the linearization model leads to linear 
and nonlinear propagation equations in the mean and covariance responses, respectively, the chaotic behavior, which 
is due to nonlinear dynamics, will not retained in the statistical linearization model. For retaining the nonlinear 
behavior in the linearization model, a modified statistical linearization is proposed. Regarding statistical linearization 
of a second-order system, the equation of mean response mi(t), i = 1, 2, consists of the variance response hij(t), i, j = 1, 
2. If the stochastic fluctuation of Duffing oscillator is weakly distributed, one can ignore the variance of displacement 
h11(t), which is appeared in the equation of mean of displacement m1(t). Thus, the formulated equation of mean 
propagation will be exactly the same as the original dynamic equation of Duffing oscillator. As a result, the mean 
equation retains the same dynamic behavior of the Duffing oscillator, and the linearized variance equation plays a role 
to monitor the generation of random behavior in chaotic response. 
 

Results 
 
For obtaining an invariant measure to identify chaotic response, the time average of variance responses 11h  instead 
of h11(t) will be employed. The 11h by Gaussian and uniform densities are simulated by selecting appropriate 
parameters and variables of oscillator for generating periodic and chaotic responses as well as the coexistence of 
periodic and chaotic response. The input excitations consist of sinusoidal excitation cos( )f tω and weak Gaussian white 
noise w(t). The simulation parameters and variables of the Duffing oscillator is listed in Table. 1. By ignoring the 
initial non-stationary h11(t), the simulated results of 11h  is shown in Fig. 1. Fig. 1 reveals that the scattering region is 
chaotic response and the regular region is periodic response, despite of the probability density in linearization. The 
simulated results are verified by employing Lyapunov exponent and Monte Carlo simulations. Here, it is noted that 
chaotic response is a highly nonstationary process and the 11h  will fluctuated in time. Thus, for the clear 
classification of chaotic and regular responses, an identification index 11h∆ , which is defined as consecutive 
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increment of time average of data record of h11(t), is proposed. The simulated 11h∆  by utilizing 40π/ω data record 
and under different initial conditions mi(0) are shown in Fig. 2. In some regions of Fig. 2, for all four different initial 
conditions, the existence of zero and non-zero scattering data reveals periodic and chaotic response, respectively. In 
other regions, the apperance of zero or non-zero scattering data will depend on the initial conditions. These regions 
reveal that both periodic and chaotic responses co-exist.The simulated results by the modified statistical linearization 
through 11h∆ are compared with Ueda parametric space [5] as well as the results by Lyapunov exponent and Monte 
Carlo simulations as shown in Fig. 3. Fig. 3 validates the validity of utilizing present method for identifying regular 
periodic and irregular chaotic responses. 
 

Conclusions 
 
An innovative modified statistical linearization method is proposed for investigating the chaotic parametric space of 
Duffing oscillator subjected to both sinusoidal and weak-noise excitations. Based on the modified statistical 
linearization model, the mean equation retains the same dynamic behaviour of the Duffing oscillator, and the 
linearized variance equation plays a role to monitor the generation of random behaviour in chaotic response. By 
incorporating an incremental time average of variance response as an identification index, the periodic and chaotic 
responses as well as the coexistence of periodic and chaotic response can be predicted. The validity of present method 
for identifying the response behaviour of Duffing oscillator is validated by employing Ueda parametric space as well 
as Lyapunov exponent and Monte Carlo simulations. 
 

         
Fig. 1 Modified Gaussian and non-Gaussian linearization under     Fig. 2 Modified Gaussian linearization under different initial 
     initial zero mean value for obtaining time-average variance         mean value, [m1(0) m2(0)], for obtaining incremental 

of x1 with varying sinusoidal amplituide.                        time-average variance of x1 with varying sinusoidal 
amplituide.                      

                                                 

Ueda parametric 
space (w(t)=0)

Lyapunov 
exponent

Modified 
Gaussian 

linearization

Monte Carlo 
method

5

5

5

5 13.1

13

13.1

6.5 7.85 108.5 10.8711.85

6.26 7.88 8.65 10.910 11.9

Chaos only

Chaotic and periodic 
(coexistence)

6.4 8.57.85 10.910 13.211.8

6.4 7.9 8.6 10.8 11.9  

Table. 1 Simulation input for 
3 cos( ) ( )x x bx cx f t w tγ ω+ + + = +   

Parameters and 
Variables Value 

γ 0.2 
b 0 
c 1 
f 0~14 
ω 1 

Noise intensity of w(t) 0.001 
h11(0), h12(0), h22(0) 0.1, 0.1, 0.1 

 

Fig. 3 Comparisons of chaotic parametric space of varying sinusoidal 
     amplitude by different methods. 
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