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Summary The bifurcation structure of period-1 solutions of a dualgliency driven asymmetric nonlinear oscillator (KelMiksis
equation, describing bubble dynamics) is examined. Théexbfrequencies are:/wo = 2 andws /wo = 3, wherewy is the linear,
undamped resonance frequency of the system. The contenhpéers were the amplitudes of the driving. Due to the spetifdice of
the frequency ratio and Poincaré section, the period-2 aridgr3 orbits (corresponding to the monofrequency dgsinfw, /wo = 2
andwz/wo = 3, respectively) are decomposed into a multitude of periadkits. The combination of the two frequency components
results in a complex bifurcation structure and interactibthese solutions in the parameter plane of the driving @ogss.

I ntroduction

Dual-frequency driven nonlinear oscillators are thordughvestigated during the last decades. From the early, 80’s
researchers paid special attention to quasiperiodicailend systems (using incommensurable frequencies) pingac
special kind of solution called strange nonchaotic attng{df]. It is strange due to its fractal nature but nonchaogicause

it does not possess positive Lyapunov exponents. The apiplicof a second frequency component is also successfully
used for chaos control to eliminate unpredictable behavidicertain systems [2]. Moreover, vibrational resonance
induced by the application of two distant frequencies plyfmportant role in many experiments [3].

The bifurcation structure in the two-dimensional paramspace of the driving with fixed, commensurable frequencies
however, is less elaborated. This is the main topic of thegestudy. The employed Keller—-Miksis equation is a second
order ordinary nonlinear differential equation widely dse model the oscillation of a single spherical gas bubble in
liquid domain irradiated with high intensity ultrasound.[& his model was successfully used to improve the efficiency
of sonochemistry, material chemistry and food processhgThis study is to be understood as a very first research step
to possible further improvement of such applications.

M athematical model

The mathematical model describing the radial oscillatiba single spherical bubble (Keller—Miksis equation) can be

written as
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whereR(t) is the time dependent bubble radius. For the details of théefrgee [4]. The parameter values during the
computations (gas bubble in water) were as follows: liquedsityp;, = 997.1kg/m?3, sound speed;, = 1497.3m/s
and viscosityu;, = 8.9027% Pas; vapour pressurgy = 3166.8 Pa; surface tensioe = 0.072 N/m; ambient (static)
pressureP,, = 1 bar; bubble sizeRr = 10 p m; polytropic exponent = 1.4 (adiabatic behaviour). The dual-frequency
driving of the system

Doo(t) = pa1 sin(wit) + pas sin(wst) 3)

is a time varying pressure field, whesg; andp 42 are the pressure amplitudes (also control parameteys); 3w, and
wy = 2wq are the corresponding angular frequencies. Kgris the linear undamped resonance frequency [4].

By introducing dimensionless time = t w; /27 and bubble radiug, = R/Rg, the dimensionless bubble wall velocity
y2 and the dual-frequency driving become= R 27 /(Rpw:) and

Poo(T) = pa1sin(277T) + pag sin(27mwa /w1 T), (4)

respectively. Observe that the periods of the first and skcomponents aré; = 1 andT> = w; /ws = 1.5, respectively.
The periodicity of the dual frequency drivingds= 3 (the smallest integer multiple of bo#y and7%), which is used for

a global Poincaré map. Therefore, in the specific cage;pf= 0 only points after every second real driving period are
sampled, while in case @f42 = 0 only after every third real driving period.
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Bifurcation structure of period-1 orbits

To obtain a global picture about the co-existing attractorthie p 41-p.42 bi-parametric planel0 initial value problems
(IVP) were solved with random initial conditions at eachgraeter pair. The resolution of the pressure amplitudes were
Ap = 0.01 bar in both directions. After the initial transient, a numben @B Poincaré points were recorded. To solve the
2.5 million IVPs within reasonable time, an in-house numeraade was used to exploit the huge computational capacity
of GPUs (Nvidia Tesla K20m), with which the computationatéi took only25.7 h. The integration algorithm was the
adaptive Runge—Kutta—Cash—Karp method.

The left hand side of Fig. 1 is a condensed view of the fourrdettirs, where the colorbar represents periodicities up to
period-9 (the black region is a mixture of chaotic and highemiodic solutions). The overlapping periodic domainsmsho
rich dynamics, from which only the period-1 solutions (geega) are investigated in more details. The middle of Fig. 1
shows the number of the co-existing period-1 solutions,re/tiee overlapping domains indicate a complex structure of
period-1 attractors hidden in the grey area in Fig. 1 leftolihindicates only the presence of at leaperiod-1 solution.
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Figure 1: Left: Periodicities of the co-existing attrastorMiddle: Number of the co-existing period-1 solutions.giRi Three-
dimensional representation of the second component ofdhlre&ré section point®(y2) over thepai-pa2 plane.

The period-1 structure is more visible in the 3D represé@matf the second component of the Poincaré section points
P(y2) (dimensionless bubble wall velocity) over thg;-p 42 plane (Fig. 1 right) where the period-1 orbits form surfaces
The solutions composing the black surfdeg originates from the equilibrium solution denoted By(observe that the
velocityy, = 0 atpai 2 = 0). If pa; = 0, an originally period-2 solution is decomposed into twoipesl solutions

P3 and P} emerged via a pitchfork bifurcation (PF), sinfe= 275 is used for a global Poincaré section insteadpf
itself (see the discussion in the previous section). Sihgjlan case ofp42 = 0, an originally period-3 solution, appeared
through a saddle-node (SN) bifurcation, splits into thregqa-1 solutionsP;, P§ and P§ (T’ = 3T}). The layers of
period-1 orbits marked bF and P are "standalone" surfaces. Observe, however, that thesnaooth transformations
between following pairs of decomposed orbify:- P; and P3-PZ.

Discussion

It has been shown that the period-1 orbits form multipleaes$ in the 41-p 42 parameter plane. This is the consequence
of the specific choice of the global Poincaré section, whiebothposes the period-2 and period-3 orbits into several
period-1 solutions under monofrequency driving. This i$ surprising, and the difference between the decomposed
solutions is only a shift in time by the corresponding morgfrency driving period. Under dual-frequency excitation,
however, these solutions become distinct. Moreover, @naction between the originally period-2 and period-3 tofu

can be observed via the splitting mechanism, see again Fightl Up to our knowledge, this behaviour in dual-frequenc
driven system has not been observed previously.
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