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Summary. In the presented paper dynamics of a rotating flexible composite thin-walled box-beam subjected to additional base exci-
tation (support movement) is investigated. The assumed blade spacial orientation and laminate centrifugal asymmetric stiffness (CAS)
material configuration results in twist/in-plane bending/in-plane shear deformation coupling. The equations of motion of the structure
are derived using the Hamilton’s least action principle. Resulting partial differential equations are discretised using the Galerkin’s met-
hod and then transformed to dimensionless form. It is found two of the coefficients of this governing equation are time-varying ones
and depend on the system angular velocity and the base excitation frequency. This results in parametric excitation and external forcing
terms correspondingly. The multiple time scale method is used to determine the boundaries of dynamic stability regions. Studies
regarding selected structural parameters like reinforcing fibers orientation angle and hub radius to beam length ratioare presented.

Introduction

Rotating, flexible thin-walled beam structures made of advanced anisotropic composite materials are widely used in
aerospace, automobile, robotic and civil industries due totheir outstanding mechanical and physical properties, such as
high strength/stiffness to weight ratios, good fatigue andcorrosion resistance characteristics.
Very often these structures are operated as on-board machines – examples are automotive turbocharger, aircraft turbines,
helicopter rotor or wind turbines subjected to gravity and even magnified by the additional earthquake shocks [1, 3,
5]. In all these cases the base excitation affects the overall performance of the rotating structure. This is exhibited by
the increased lateral blade vibrations and in limit states it may lead to the large responses and the dynamic instability
phenomenon.
The problem of a rotating and moving beam has been discussed in the literature, but most of research deals with slender
specimens made of isotropic material [6, 8]. Very limited number of studies is devoted to rotor structures made of
composite materials despite the directional properties provided by fiber reinforced composite materials that can be used to
enhance the system response characteristics. Therefore a proper mathematical model and further comprehensive studies
on the composite beam rotor considering multi-source excitations are of prime scientific and engineering interest.

Problem formulation

The system under consideration comprises a slender, straight and elastic composite thin-walled beam clamped at the rigid
hub that is experiencing rotational motion as well as to-and-fro motion – see Figure 1. The temporary position of the hub
is given by a position vectorξ(t) as well as a rotation angleψ(t). For simplicity, the direction of the hub angular velocity
ω = ψ̇(t) is constant and fixed in space (parallel to inertialZS axis at all times) and the hub is assumed to be moving
along (XS = X0) axis only. It is assumed that the above mentioned translational motion of the centre of the hub is given
by a periodic oscillationξ(t) = ξ0 sin υt, where denotationsξ0 andυ correspond to the amplitude and the frequency of
to-and-fro motion respectively. Detailed information on the assumptions made in the mathematical model of the system
and further adopted simplifications are given in authors previous papers [2, 4].
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Figure 1: Schematic diagram of a rotating beam with in-planebase movement.

The equations of motion and boundary conditions of the rotating beam are derived according to the extended Hamilton’s
principle of the least action:

δJ = δ

∫ t2

t1

(T − U)dt = 0, (1)

whereJ is the action,T is the kinetic energy,U is the potential energy. Step by step derivation of the full system of
equations of motion for a complete model including both transversal/lateral bending directions, shear deformations and
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warping effects, as well as arbitrary pre-setting angle andnon-constant rotational speed can be found in authors papers
[2, 4]. In the presented case the co called Circumferentially Asymmetric Stiffness (CAS) lamination scheme is assumed.
This simplifies the general system of governing equations and results in flap-wise bending/twist modes coupling.
The governing equations are expressed in terms of unknown kinematic variables (displacements) of its cross-section
reference point located at(ox) axis as follows:
• w0 lead-lag plane displacement

b1ẅo − 2b1u̇o ω − b1woω
2
− b1ξ0ν

2 sin νt sinωt− a55ϑ
′

y − a55w
′′

o − (Txw
′

o)
′ = 0 (2)

with boundary conditions wo
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• ϑy in plane transverse shear angle

B4ϑ̈y −B4ω
2ϑy + a55(ϑy + w′
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′′

y − a37ϕ
′′ = 0 (3)

with boundary conditions ϑy
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• ϕ twist angle
(B4 +B5)ϕ̈+ (B4 −B5)ω
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′)′ = 0 (4)
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In all foregoing relationsBi andbi factors depict the inertia terms andaij ones correspond to beam stiffnesses [2]. Term
Tx(x) is defined as

Tx(x) = b1(L− x)
{

ω2
[

R0 +
1

2
(L+ x)

]

+ ξ0ν
2 sin νt cosωt

}

and it corresponds to systems stiffening/softening resulting from both transportation motions, whileTr(x) = B4+B5

m0β
Tx(x).

Quantitym0 is mass of the beam per its unit length andβ is a perimeter of the cross-section.
Next, the system is converted to the dimensionless notationand the final ordinary differential equation of motion is written
as follows:

q̈ + ζ1q̇ + (α11 + α13Ω
2
r)q + α14Ωr q̇ − α1pq sinΩtτ cosΩrτ − α1e sinΩtτ sinΩrτ = 0, (5)

whereq is the generalised coordinate corresponding to the studiedcoupled flexural-torsional motion. Coefficientsαij

result from Galerkin’s projection,ζ1 is damping coefficient;Ωr andΩt are dimensionless frequencies of system rotation
and to-and-for motions respectively.
Equation (5) is a second-order differential one and it contains the parametric excitation term (withsinΩtτ cosΩrτ ) as well
as the time dependent excitation one (sinΩtτ sinΩrτ ) both resulting from the rotational and the translational motion of
the beam. This form of governing equation is different from typical Mathieu-Hill’s equations as often met in engineering
problems – e.g. column buckling under time periodic compression or pendulums systems.

On-going studies

The given above Eq. (5) inhomogeneous differential equation with periodic parametric and external forcing terms will be
solved. The multiple time scales method will be used to determine the boundaries of dynamic stability regions. Discussion
regarding selected structural parameters like reinforcing fibers orientation angle and hub radius to beam length ratiowill
be presented.
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