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Summary. Active vibration control of a nonlinear system is presented using pole placement technique. The receptance method is applied 

to design a feedback control system to suppress vibrations of a multi degree-of-freedom (MDOF) nonlinear system. Both velocity and 

displacement feedback are implemented to change the damping and the frequency of the resonant peak. The feedback control gains are 

obtained from an iterative method as the input amplitude varies as a result of the control force. The closed-loop amplitude of the response 

demonstrates the successful assignment of the peak resonance. The forcing amplitude is then varied and the level dependent feedback 

control gains, which can assign the peak resonant at the prescribed location are obtained. 

 

Application of the Receptance Method to a MDOF Nonlinear System 

Active control is widely used to control the vibrations of linear systems [1]. However, there is not much work in the 

field of active vibration control of nonlinear systems. The problem is challenging, since the response of the nonlinear 

system is amplitude dependent, and any changes in the input amplitude can affect the performance of the closed-loop 

system. Therefore, to maintain the performance, the control system should take into account this level dependency on 

the input forcing. The receptance method, which is based on the frequency responses has been developed for a single 

DOF system to assign the peak resonance [2]. Here, the receptance method is extended to a MDOF nonlinear system 

to assign the peak resonances, while maintaining the other modes unchanged. The control force distribution is chosen 

to be orthogonal to the unchanged mode.  

The dynamic equations for a MDOF nonlinear system can be written as, 

               )()(),()()()( tutttt extN bfxxfKxxCxM                                                          (1) 

where, KCM ,,  are the mass, damping and stiffness matrices, respectively. )(tx is the displacement responses, )(textf

is the external excitation, )(tNf is the nonlinear forcing vector. The control force is a linear combination of the 

velocities and displacements, with a control force distribution b and displacement and velocity feedback gains g  and 

f respectively, such that, 
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The closed-loop response amplitudes can be written in terms of the open-loop response amplitudes and the feedback 

gains using the Sherman-Morrison formula in the frequency domain as discussed in [2].  
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The open-loop amplitude responses, )(),()( sss fXHX  , are obtained from the harmonic balance using the 

describing function of the nonlinearities, ),( XN s , where 
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To assign the two eigenvalues ),(


jj  , the following equations are solved to provide the control gains.  
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Since, the control force can change the input amplitude, an iterative method is used to obtain the feedback gains. First, 

an initial amplitude of responses corresponding to the underlying linear system is considered. This amplitude is 

substituted into Eq.(4) to obtain the open-loop frequency responses. Then, the frequency responses are inserted into Eq. 

(5) to obtain the initial feedback gains. The stiffness and damping matrices are updated using 
T

bgK  and 
T

bfC  . 

The updated matrices are then used in Eq. (4) to obtain the modified amplitude of responses, X . This procedure 

continues until the feedback gains are converged.  

Numerical Simulation 

 

A two DOF system with cubic stiffness nonlinearity is considered as, 
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The describing function of the nonlinear force is therefore  TXXs 0)5.0(75.0),(
2

11 N .The open-loop eigenvalues 

of the underlying linear system are .72.11.0,1 4,32,1 ii    We wish to assign the eigenvalues of the nonlinear 
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system to i8.001.02,1  using the control force distribution  T11b . This vector is orthogonal to the second 

linear mode, therefore it is expected that the second mode is unaffected particularly at low excitation levels. The iterative 

procedure is applied to obtain the control gains for example when the forcing amplitude is NF 08.0 as shown in 

Figure 1(a) and (b).  

 

  

(a) (b) 
Figure 1. The feedback control gains at every iteration (a) velocity gains (b) displacement gains 

 

The open-loop and closed-loop amplitude of responses are shown in Figure 2. It can be clearly seen that the peak 

resonance is assigned at 0.8rad/s. The second mode is unaffected by the control force.  

 
 

(a) (b) 

Figure 2. The amplitudes: open-loop marked with blue solid line and closed-loop marked with red dashed line (a),
1X , (b) 

2X  

The forcing amplitude is varied from 0.01N to 0.08N and the level-dependent control gains are plotted in Figure 3, 

which maintains the closed-loop peak resonance at 0.8 rad/s. When the forcing amplitude increases, the nonlinear 

effects become more evident. For higher forcing amplitudes, the feedback gains do not converge. The convergence of 

the algorithm will be investigated as part of the future work. 

  

(a) (b) 
Figure 3. Level dependent gains at every forcing amplitude (a) velocity gains (b) displacement gains 

 

Conclusions 

A control strategy based on the receptances is developed to assign the peak resonance of a MDOF nonlinear system. 

The method requires an iteration to adjust for the variation of the input amplitude due to the control force. It has been 

demonstrated that the feedback control gains can assign the peak resonances successfully.  

References 
[1] Mottershead J. E, .Ram,Y. M. (2006), Inverse eigenvalue problems in vibration absorption : Passive modification and active control, MSSP, 20 (1) 5–

44.  

[2] Ghandchi Tehrani, M. Wilmshurst, L and Elliott, S.J. (2013), Receptance Method in Active Vibration Control of a Nonlinear System, JSV, 332, 4440-

4449. 


