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Summary The knowledge of road traffic parameters is of crucial imgace to ensure state-of-the-art traffic services. Due to the
widespread of today’s information communication techgae the classical approach of road traffic detection hadaumentally
changed. Beside or instead of traditional static trafficseesithe so called floating car data (FCD) has come to the Tdnerefore,

the question arises: how to estimate traffic state from FG8ramation? Intermittent observations of link travel time® typical in
urban road networks as the frequency of FCD based obseamsatdime variant and traditional detector stations arepnesent on

all links. Though, one aims to retrieve full information diet network, e.g. average travel times or traffic densitiealblinks. To
achieve this goal a robust state estimation methodologsoisgsed via Kalmarif ., Filter which both involve data fusion and take the
uncertainty of turning rates into consideration. The gs&bireconstruct the whole picture of urban road traffic framrently available
measurement data. Practically, incomplete mosaic pidaesd traffic data are fused and applied to create a reliaafict estimation
both on link-level and network-level.

Introduction

As fleet management systems, autonomous vehicles and V&Xdkagies become even more widespread, even more
FCD will be generated by them. Taxis, public transport busesother vehicles operated by fleet management systems
are sources of FCD even today. Accordingly, emerging neswafehese kinds of information (popularly called big data as
well) can be efficiently exploited for traffic estimation [1$ince data collected from different sources are heteregen

and intermittent, a Kalman Filter based data fusion tealmig proposed in this paper dealing with incomplete FCD1tinpu
data, which is expected to be more appropriate than the mekbgies used in current traffic state estimation systems.
The available web map services typically consider onlyetéime data and accordingly offer information concernimg t
average traffic speed, e.g. Google Maps uses color codeseef states (free flow, medium, and congested traffic). Our
approach, however, targets a more complex traffic estimdtésed on a macroscopic traffic model beside FCD travel
time measurements, providing traffic density as well asayetraffic speed information of all links in the network.

Applied macroscopic traffic models

Urban road network traffic modeling using link-based macroscopic fundamental diagram

Considering a macroscopic approach (individual vehicleadyics are omitted), for link the number of vehicles can
be modeled based on the vehicle-conservation law dyfifig(k + 1)T'] whereT denotes the sample time ahd=
0, 1, 2, ...isthe discrete time index:

na(k+1) =n(k) + T | D w:qu(k) —g=(k)] . €Y
welns
The parameters in Eq. (1) are defined as follows:is the number of vehicles on link (in passenger car equivalent -
PCE); I denotes the set of incoming linksat junctionlM, i.e.w € Ip; oy, € [0,1] is the turning rate from linky
to link z; ¢,, denotes the traffic flow from linke (PCE/T); g is the traffic outflow from linkz (PCE/T).

A crucial point of Eq. (1) is the dynamics of link outflows. A ggible approach to describe traffic outflow in a given
network is described by the theory of urban fundamentalrdimgwvhich was first proposed by [3]. The theory is called
macroscopic fundamental diagram (MFD). This concept haelyibeen investigated during the past decades, e.qg. [8],
[2], [4], [5], [9]. By using the analogy of the MFD conceptgtbutflowsg,, . andg. can be defined by restricting the traffic
network to link level. This practically means that each Ihks a dedicated MFD model. MFD assumes the following
fundamental relationship:

q=p-0, (2)

wherep denotes the traffic density andis the space mean speed on a link. There are several formuddabde in
the literature forv [14]. In this papaer, one of the basic relationships is usediéscribing the speed of link (called
Pipes-Munjal model [10], which is practically a modified sien of Greenshields’ model):

o) = ot [ (22)]. @

z

wherev/"e¢ represents the free-flow speed (i.e. no congestjgf)! is the jam density (practically a ’bumper-to-bumper’
case within the road link) andis an empirical parameter. As traffic density is defined as
N,

Pz = 1’ (4)

z



ENOC 2017, June 25-30, 2017, Budapest, Hungary

(I is the link length) Eq. (3) can be recast as follows:

vy(n,) = Uf”e [1 — ( me) ] . (5)
nz
By substituting Eg. (5) into Eq. (2), the link-based traffmvilis derived:
4z = P20z = Evg'ree {1 - < ﬁazm> } . ©
lz Tlé

Note that flowg,, is also calculated by the formula of Eq. (6) concerning link

Two-fluid model for link-based traffic description

The two-fluid model [6] consideres as the whole traffic flow wamposed by two flows: the flow of moving vehicles
and the flow of vehicles stopped in traffic lanes (e.g. at rgddi in traffic jams, for freight delivery etc). The model
defines the fraction of stopped vehiclesfdswhich can represent the ratio of the time while a floatingoi@oulating in

a network is stopped divided by its whole travel time:

TS
s = —. 7
IP=5 )
The two-fluid model states thg@f can be given in term of concentration:
p
f”=(pﬁm) 7 ®)

wherep’*™ denotes the jam density and parametir the measure of quality of the traffic network. Substitgtiy. (4)
into Eq. (8),f° can be rewritten as:

s I? n \P
f - T - (nljam) ' (9)
The two-fluid model is usually applied to characterize a whodffic network (town or districts). Nevertheless, the two

fluid approach is also valid for smaller networks. Therefarknk-based two-fluid model can be given concerning kink
as follows:

T2 n. \"
r=1-(5=) (10

whereT? is the average stop time of the floating cars going throughdiandZ’, is the average travel time of vehicles on
link z. Sincef* provides us information on queue lengths on links, it givesoae specific description of the traffic state
on links than average travel time or speed would.

Model for link vehicle-count based on time-occupancy measement
In road traffic technology the most common used sensor tygemagnetic sensors and inductive loop-detectors. The
time-occupancy parameter of these is calculated as follows

t_ztocc
0= =7, (12)

where} t°cc denotes the sum of all occupancy times while the detectanisred by vehicles during sample tiriie
[11] derives the relationship between time-occupancy mressents of cross-sectional traffic detectors and the inkd |
space-occupancy. Space-occupancy is defined as the rétie sfim of all vehicle lengths and the link length:

s Z lveh. (12)

o, I
Moreover, by considering a unit vehicle lengff ~:
L lPCE
o = "17 (13)
Time and space-occupancy values are quite similar [15jefoee the slight difference between them can be modeled by
an appropriate noise ter
n, - lPCE

. (14)

oL =o0l+(=
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Traffic modeling and measurement

The nonlinear traffic model

The discrete time state space representation of a nonlityeamics (without control input in this case) can be given by
the following stochastic difference equation:

r(k+1) = f (x(k), v(k)), (15)
with the measurement equation:
y(k) = g (z(k), C(k)), (16)

wherev(k) and((k) represent the process and measurement noise respectively.
State vector is composed as follows:

z(k) = |ms(R) | (17)
wheren, denotes the number of vehicles on linkz = 1, 2, ..., n).

Based on Eg. (1) the dynamics of each link Eq. (15) is given as

nz(k + 1) = nz(k) +T Z aw,zQw(k) - Qz(k)

weln

+ vz (k) (18)

augmented by, (k) as a noise term in the system.
Applying Eq. (6) for traffic flow dynamics, Eq. (18) finally bemes:

na(k+1) = n.(k) +T | Y g oK) pree {1 - (ij_(f})a] 2k pree [1 _ (”_(’“f)ﬂ

lw lz %am

+v.(k). (19)

weln
Sample time T can be long, even 15 minutes, therefore, tieetadf signal controllers are taken into consideration as an
average value which means that it is not necessary to knogighal programs.

According to the state space representation form, the memsnt equation (16) must be defined as well. Using the
models provided in the previous sections, the following sueaments can be defined in the system:

e 0! is the time-occupancy on link, measured by traffic detectors as given by Eq. (11).

o f5= ?— from Eq. (10) is detected as floating car data (FCD) for a singhicle. Hence, the mean of all floating
car measurements during the sample time can be calculated as

jroZefie (20)
num
wherenum denotes the number of cars measured ondinks p is a constant parameter, Eq. (10) can be rearranged:
r£s 1/P ny
(f)"" = mery (21)

7o\ 1 . .
Therefore(fs) /7 is considered as a measured value.

Finally, the discrete time measurement equation is giveolbsvs:

[ PCE A r ~det 7
[ Ozi (k) ] : [ }iet(k)
t 1PeE 57 (k)
OQ(k) 1o get(k)
' [ |
Ot (k}) |PCE N9 k dezg
_n _ ln k Cn (k)
5 1 :
( 2) : (k "%W nn(k) ?CDEkg
rs 1./10 z (k) :
NG e [CFP (k)
y(k) c N —’
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Linearization of the nonlinear traffic model
To better deal with the nonlinear dynamics given in the presisection, the linearization technique via Taylor s€i8%
can be used for Egs. (15)-(16), i.e. the real stasend measurementvectors are approximated:

(k4 1)~ (00,00 + LEED gy gy TR0, 3
o)~ (@0, 0) + 22D (o) — a1y + ZERD (22)

wherez (k) denotes the estimate of the state at discrete timekstep
Practically, the linearization means the calculation ablsan matrices of partial derivatives of functions (158

A(k) = 31"(%(;)70)’ (25)
B, (k) = SLGR0, (26)
Ck) = 20000 (27)
Ce(k) = 22500, (28)

By using the simplified notation of (25)-(28) for Eqgs.(224{, the following formulas are obtained:
x(k+1) = z(k) + A(k) (x(k)—z(k)) + B, (k)v(k), (29)
y(k) = (k) + C(k) (x(k)—2(k)) + Cc(k)C(k), (30)

wherez (k) andg(k) are the approximated state and measurement variables.
Accordingly, the linearized matrices must be determinele formula described by (25) is meant as differentiation by
each element of state vector Therefore, for the state equation (19) two basic casesiaza:g

1. If the differentiation is done by state variable indexgd:lfi.e. n.):

ona(k+1) vl n-(k)\"
T_l_T . (1_(a+1)(n§"’m . (31)
2. If the differentiation is done by state variable indexgdb(i.e. n.,):
n.(k+1) vfree 1 (k) \
8nw B Oéw7ZT lw (1 - (a + 1) ( ,ZJU«W . (32)
Jacobian matrix3,, is resulted as
B, (k) = 1. (33)

The Jacobian matrices of the measurement equation (22)vare &s follows:

rjPCE b

lPC'E

l2

lPCE

C= 1 b ) (34)

~Fam
2

jam
ny

Ce(k) =1I. (35)
Robust state estimation

Since we have a system of which the noise descriptions @tistital properties of turning rates) are unknown, Kalhiag
filter is applied to resolve robust state estimation probleeaording to the description provided in [12].
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Uncertainty in the traffic model

Turning raten,, . is a quite ambiguous point of the traffic model described in(E]). Obviously, one is able to estimate
this term based on previous measurements. However, exiafleevalues cannot be found for turning rates as they are
strongly stochastic variables. Therefore, a robust agbrean be applied for state estimation. By following the mdth

of robust KalmanH , filtering for a linear system [12], uncertainties can be @scdated into the linearized system model
(29) derived previously:

x(k+1) = &(k) + (A(k) + AA(k)) (z(k)—2(k)) + B, (k)v(k), (36)

where A A denotes the uncertainty matrix concerning the turningsralédhe uncertainty matrix is assumed to be of the
following structure:

AA(k) = M(k)T(k)E(k), (37)

whereM (k) and E(k) are known real constant matrices of appropriate dimensamdl' (%) is an unknown real time-
varying matrix satisfying the following inequality:

I'T(B)T(k) <1 (38)

Kalman/ H , filter design with data fusion

Apart from robust state estimation, the designed filter nasb be able to fuse data collected from different sensor
sources. These sensors can either be installed into themfvastructure or can be in connection with the movement of
vehicles, for example floating car data (FCD), or floating iteodata (FMD). On those links where there is at least one
built-in road traffic sensor, data is generated continugtiserefore, the estimation of the Kalman Filter can alwbags
updated, even if FCD is available. On links where no builtkgtector is installed, the continuous Kalman Filter update
cannot be guaranteed, since measurement data is only tgghérdere is a vehicle equipped with such device. If there
is no measurement data in a period, the intermittent Kalniltar Fechnique is used, i.e. the state estimate of the posvi
time-step is simply propagated [7].

Example

A minimal example modelling a simple junction (see Fig.Iprisvided to show how the proposed method can be applied.
The state of the network is represented by the number of ksshan links while traffic information is collected from

on-street traffic detectors and moving vehicles.

nyg

n3

ny O

Y
A4

o

Figure 1: Example network

The discrete time system model is given as follows:

ma (k) + T Yy o 258 0free [1 - (258) "] - ra®yfree [1 - (1)) 4y (k)
e na(k) + da(k) = T25820f [1 = (2202)"] + va(h) 0
nalk +1) ny(k) + dy(k) — T2 pfree [1 — (BB 4 (k) 9
ket na(k) + da(k) — T24E {1 (”?&':3)“} + va(k)

whered,, (k) denotes vehicle input demand appearing at the boundaryedfaffic network entering to link indexed by
w =2, 3, 4.
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Assuming that traffic detector stations are only presenirdeid and 4 the discrete time measurement equation is given as
follows:

[ o) ] i e
o) 1 | fm®] | Gl
() 0 na(k) |, | Gi(k)FeP (40)
(f5) """ (k) —Jam nz(k) Ca (k)PP
()" (k) R (k)] Ga(k)"CD
()" ) t Ga(k) 7P

The linearization provides:

A(k) =
Tvime (atl)ng (k) vfree (atl)ng (k) vfree (atl)n (k) vfree (atl)ng (k)
-1 (n{wg)a ) ag T ke (1— (ngaf)a ) g TE—(1— (nga"?)a )y TH—(1— (nz;"f)a )
1T (=) (41)
1— Tvl;,‘ (1— (et (k) ‘
8 (n3*™)e
_Tf™C 1 (ab)ng (k)
L i (ni‘”")a)
B,(k)=1. (42)
The Jacobian matrices of the measurement equation (22)vare ags follows:
r lPC'E -
l2 lPCE
1 ba
c=|"" , (43)
ndem .
néam L
L T
Ce(k) =1 (44)

The next step is to determine the uncertainty maftiz modeling the ambiguity of the turning rates. According te th
formula of (37),M (k) andE (k) are defined as follows:

free a free a free a
v _ (a+1‘)n2 (k) V3 _ (a+1.)n3 (k) Vi _ (a+1.)n4(k)
0 TH(-LHE0) pE el paft g (i)
M(k) = |9 0 0 0 , (45)
0 0 0 0
0 0 0 0
0 0 0 0
o 0 62,1 s 0 0
E(k) o 0 0 5371 c Q31 0 ’ (46)
0 0 0 041 a1

whered, 1, d3,1 andd, 1 are uncertainty factors that weight turning rates. For edam = 0.1 expresses that the applied
nominal turning rates,,, . of the model might vary by:10% .

Simulation

The operation of the filter is tested based on simulation thetawere generated using PTV Vissim microscopic traffic
simulation software. The network shown in Fig. 1 was impleted into PTV Vissim where the state of traffic was
evaluated in 1 minute long periods. Occupancy data wereatell from links 2 and 4 and two-fluid data were collected
from each link. The filter estimates from these input datarthmber of vehicles on the links. The exact number of
vehicles were also measured and were compared to the estimaitnber provided by the filter. The expected operation
of the filter can be seen in Fig 2, even if the performance oftbdel does not reach this accuracy so far.
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Figure 2: Expected result of simulation (nl is the numberedfigies on link 1)

Conclusions

Intermittent data generated by vehicles and transporastfucture is not reliable for estimating the state of theleh
network. Therefore, the methodology presented in this pages both link-based and network-based macroscopictraffi
models of which the results are combined by a data fusiomtgak using Kalmarf ., filter. The model uses a ro-
bust approach, therefore uncertainties in the traffic méekgbecially in turning rates) are treated as well, howether,
performance of the simulation example needs to be developed
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