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Summary. The paper deals with the analytical investigation of the behavior of the harmonically excited physical pendulum suspended 

on the nonlinear spring. The asymptotic method of multiple scales (MS) has been adopted in order to carry out the analytical 

computations. The solutions to the equations of motion up to the third order have been achieved. Such an approach allows one to 

perform a qualitative analysis of the behavior of the system. MS method allows one, among others, to recognize all possible 

resonance conditions which can appear in the system.   
 

Introduction 

 

Although pendulums are relatively simple systems, they can be used to simulate the dynamics of a variety of engineering 

devices and machine parts. The behavior of pendulum-type mechanical systems with nonlinear and parametric 

interactions is complicated, and hence its understanding and prediction are important from a point of view of both the 

theory and application. The coupling of the equations of motion results in a possibility of autoparametric excitation and 

is connected to the energy exchange between vibration modes [4]. Various kinds of pendulums are widely discussed in 

numerous references and analytical investigations are recently of great interest of many researchers. In the paper [1], the 

kinematically driven spring mathematical pendulum is tested near main and parametric resonances. The 3 degree-of-

freedom (DOF) system with a double pendulum is analytically investigated in the paper [3]. The physical pendulum 

suspended on the a spring has been modelled and discussed in the article [2]. The present paper extends these 

investigations and presents the results of further development of the model. 
 

 

Formulation of the problem 

 

The mass-spring-damper system studied in the paper and presented in Figure 1 is constrained to the planar motion. The 

mass of the rigid body suspended at the point O is equal m. IA  denotes the body moment of inertia about the axis which 

passes through the point A and is perpendicular to the plane of motion. The mass center of the body is located at the 

point C, therefore the eccentricity E=AC. The spring is assumed to be massless and nonlinear of cubic type, and k1 and 

k2 are constant coefficients.  The extension Z of the spring and angles φ and ψ are used as the general coordinates. The 

system is driven by the harmonically changing torques )cos()( 22 tMtM   and )cos()( 33 tMtM  , and the force 

)cos()( 111 tFtF   which acts at the point A along the spring. A linear damper with constant C1 is included in the 

system. Furthermore, two torques of viscous nature attenuate the swing vibration related to the angles φ and ψ (C2 and 

C3 are  viscous coefficients). 

 
 

Figure 1. Mass-spring-damper system 
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The dimensionless forms of equations of the system motion are as follows 
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where   , ,z  are generalized coordinates and functions of the dimensionless time tω=τ 1 . 

The dimensionless quantities are defined as follows: LE=e / , LZz / , rZLL  0   where L0  is the length of the non-

stretched spring, Zr is the spring static elongation, and LZz rr /  is its dimensionless counterpart which fulfils the 

equation 
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m
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=ω1  as the reference quantity, we introduce the dimensionless parameters as follows   
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Equations (1)–(3) should be supplemented by the initial conditions for generalized coordinates and their first derivatives 
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The trigonometric functions of arguments φ and   are approximated by the power series up to the third order in a 

neighborhood of the static equilibrium position. The MS method is applied to solve the governing Eqs. (1)–(3).  

The functions z,  , and   are approximated by the power series of the small perturbation parameter ε  and can be 

presented in the form 
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where τ,=τ0 ετ,=τ1  
2

2τ = ε τ, are various time scales. 

The approximate analytical solution obtained using the MS method allows one to detect all possible resonance cases. 

The appropriate approach gives the possibility to determine the frequency response of the system in resonance and also 

to estimate stability of the obtained solutions. 

 

Conclusions 

 

The approximate solution to the governing equations, up to the third order, has been obtained using the MS method with 

three time scales. The analytical form of this solution is the main advantage of the applied approach, giving the possibility 

of the qualitative and quantitative study of the system dynamics in a wide range of the frequency spectrum. The adequate 

conditions for all possible resonances have been derived. The applied approach allows for studying up to three 

resonances occurring simultaneously. In addition, the proposed procedure gives a possibility to discuss both steady and 

non-steady vibrations of our forced system. 
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