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Summary. New so-called hybrid seals have recently been developed combining advantages of labyrinth and brush seals. This contri-
bution discusses one of their properties by investigating the influence of compliant seal support on rotordynamic behaviour. The model
under investigation consists of a Laval-rotor (Jeffcott-rotor) and a visco-elastically supported stiff seal ring. The non-linear Muszynska-
model is applied to represent the fluid forces stemming from the turbulent flow through the seal. The system dynamics are investigated
for an unbalanced and the special case of a balanced rotor. In both cases, stability and bifurcation analysis is conducted. Due to the
compliant support equilibrium or periodic solutions exist at higher rotational speeds compared with a stiff seal support. Unbalance leads
to stabilisation- and synchronisation-effects. Resonance passage is possible with a lowered risk of rotor-seal contact. A rich bifurcation
and non-linear behaviour is encountered after the steady state solutions loose their stability.

Introduction

Seals are important components for a lot of machinery. By reducing leakage they secure machine function and maintain
efficiency. In rotating machinery design solutions are needed that seal the necessary gap between rotating and standing
parts: Labyrinth or brush seals are frequently used in this case. Nonetheless, even seemingly simple elements like seals
produce new design challenges: one example is today’s demand for variable operation schemes for conventional power
plants due to fluctuating generation of renewable energy that require seals to be capable of adapting to turbine rotor
vibrations induced by the more frequently occurring start-up and shut-down runs [1].
Labyrinth seals are comparatively inexpensive standard functional elements which are being used since decades with
a broad application range. The contact-free working principle causes almost no wear and leads to a long service life
under ideal working conditions. Aiming for low leakage characteristics the sealing gap is kept as small as possible but
at the same time it must be able to compensate rotor vibrations and thermal expansion without surface contact. The
ever remaining leakage flow leads to fluid forces and inherent circuclatory forces: above a distinctive operational speed a
loss of steady-state stability might be the result with consequences reaching from unwanted noise emission or increased
leakage due to seal damage up to material fatigue.
Brush seals are in contrast contacting seals comprising fibres which are usually made out of metal in a housing. The
densely packed brush can reportedly reduce the leakage up to 60% [2] to 80% [1] (in a multistage variant) compared
to a conventional labyrinth seal whilst being able to adapt to rotor deflection [3]. In addition, the fibre structure breaks
up fluid swirl [2], which is a physical mechanism behind destabilising circulatory forces [4]. Apart from thermally
induced rotor vibrations due to frictional heating between rotor surface and bristles (Newkirk-effect [5, 6]), leakage
induced instabilities are thus far less likely to occur. Yet, brush seals are more expensive and their function principle
inherits shorter maintenance and replacement intervals.
A comparatively new approach are compliant hybrid seals (e.g. Halo seal [7], Gland seal [1], hybrid brush seals [3]). The
idea of various designs is to combine the advantages of labyrinth and brush seals: non-contacting surfaces lead to low
wear while added flexibility in the seal structure gives the capacity to adapt to rotor deflection and therefore minimizing
the risk of surface rubbing. The adaptability makes it possible to define smaller sealing gaps in the construction process,
therefore lowering leakage and increasing efficiency. In addition, Halo and Gland seal adjust the gap according to the
pressure drop over the seal and the pressure distribution in the seal. Halo seals are already in use and can reduce leakage
up to 70% compared to labyrinth seals [7].
An important part in modelling the influence of seals on rotordynamics is the description of the lubrication flow. The
high pressure drop leads to high axial velocities and most of the time turbulent flow. Whilst fully- or semi-coupled
multibody-CFD simulations are always possible they are most of the time too costly. This is why modelling approaches
often restrict themselves using reduced fluid flow models which is permissible due to the large aspect ration between rotor
radius and sealing gap. Literature provides a lot of different turbulent flow models applicable at intermediate Reynolds-
numbers, like the Constantinescu model from 1959 [8] or the Ng-Pan model from 1965 [9], and flow models for higher
Reynolds-numbers when omitted fluid inertia is not allowed. Popular representatives are the extended Constantinescu-
[10] and Ng-Pan-models [11] or the semi-empirical Hirs-model [12]. In fact, the mentioned models are just some popular
representatives and new mathematical flow descriptions are still developed today.
Most often, even doing coupled simulation with lower dimensional PDE models is still too cumbersome. This is the reason
why it’s common practice in rotordynamics to use force coefficient ODE models for the fluid forces stemming from seals,
which are usually dependent on the rotor position and the rotational speed. These (non-linear) dependencies and the case
specific coefficients are either determined by experiment, numerical integration of a reduced model or the Navier-Stokes
equation or analytical description. Here, we use Muszynska’s model [13, 14, 15] to describe the mathematical structure.
Muszynska postulated the mentioned non-linear dependencies of the fluid forces based on heuristic considerations as well
as experimental and numerical observations. The bulk-flow theory is the basis for the modelling approach: since the
sealing gap is small compared to the rotor radius any radial flow can approximately be neglected. The remaining variables
are substituted by radially averaged quantities. The result is a fluid bulk co-rotating in the sealing gap with an averaged
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angular velocity of 0 < τ f 0Ω < 1
2 Ω, where τ f 0 = 1

2 is the radial mean value of a perfect laminar Couette-flow. This
has the interpretation of a fluid force rotating with τ f 0Ω for the case of a centred shaft. In addition to that, the model
relies on the following conditions to hold [14] : The rotor vibrations must be small enough for the circumferential flow
to remain unidirectional (no secondary/ backward flow) and the whole flow must be temporally fully developed. The
model has been widely used in literature not only by Muszynska herself who investigated oil whirl and whip phenomena
[13] but also to look into non-linear rotordynamic phenomena like bifurcations, complicated periodic orbits and chaotic
behaviour [16, 17, 18, 19]. To account for the coefficients of the ODE model Childs’ equations [4] based on Hirs’ bulk
flow model [12] are used. Childs’ looked at small perturbations of a rotor spinning centric in a short seal and derived
analytical expressions for the coeffcients of a linear ODE describing the fluid forces.
The objective of this contribution is to investigate the non-linear dynamic behaviour of a rotor system with a compliant
seal considering a balanced as well as an unbalanced rotor. In the modelling section the compliant rotor-seal model is
presented and the Muszynska model is discussed. The results section is subdivided into two parts: The first one presents
the stability and non-linear behaviour of a balanced system whereas the second part does the same for the unbalanced case.
The contribution closes with a summary and outlook. All results were obtained using Matlab R© and/or the continuation
toolbox Matcont.

Nomenclature
subscripted R/ S : rotor/seal-related, A : matrix a : column-matrix ~a : vector

I : inertially fixed cartesian reference frame R : rotor fixed/ co-rotating cartesian reference frame
~̄qR,S =

~qR,S

C dimensionless position vector wrt R t time
q̄R,S =

qR,S

C dimensionless position matrix wrt R C nominal sealing gap
q0 equilibrium position wrt R D f /D f 0 fluid damping
∆~q = ~qR − ~qS dimensionless rotor seal distance wrt R K f /K f 0 fluid stiffness
~̄rR,S =

~rR,S

C dimensionless position vector wrt I L seal length
r̄R,S =

rR,S

C dimensionless position matrix wrt I R rotor radius
∆~̄r = ~̄rR − ~̄rS dimensionless rotor seal distance wrt I V axial fluid speed through seal
~̄F f (∆~̄r) =

~F f

cRC dimensionless fluid force wrt I δR,S =
dR,S

2
√

cR,S mR,S
dimensionless rotor damping constant

B(),R,S general/ rotor/ seal matrix of velocity
proportional forces

δ f /δ f 0 =
D f /D f 0

2
√

cRmR
dimensionless fluid damping/ con-
stant

C(),R,S general/ rotor/ seal matrix of positional
proportional forces

ε = ‖~qR − ~qS ‖ relative eccentricity

M(),R,S general/ rotor/ seal mass matrix η = Ω
ωR

dimensionless angular rotor speed
Q matrix defined by equation (13) κ2 =

cS
cR

stiffness ratio
R rotation matrix κ2

f /κ
2
f 0 =

K f /K f 0

cR
dimensionless fluid stiffness/ constant

T̄ = 1
η

dimensionless period duration µ dynamic fluid viscosity
b empirical parameters µ2

S =
mS
mR

seal mass ration
cR,S stiffness coefficient µ2

f =
m f

mR
fluid mass ratio

dR,S damping coefficient ξ seal inlet pressure loss coefficient
e mass eccentricity ρ fluid density
m f coefficient of fluid inertia τ = ωRt dimensionless time
mR,S rotor/ seal mass τ f /τ f 0 fluid average circumferential velocity

ratio/ constant
m0 Childs-Hirs coefficient [4] ∆ϕ phase difference between rotor and

seal
n empirical parameters ωR = cR

mR
rotor eigenfrequency

n0 Childs-Hirs coefficient [4] Ω angular rotorspeed
∆p pressure drop over seal

Table 1: Nomenclature of used variables and parameters.

Used abbreviation
EQ equilibrium position PLC periodic limit cycle QPLC quasi-periodic limit cycle
FB fold bifurcation HB Hopf bifurcation NSB Neimark-Sacker bifurcation
SFB secondary fold bifurcation/

fold bifurcation for maps
SNSB secondary Neimark-Sacker bifurcation/

Neimark-Sacker bifurcation for maps

Table 2: Abbreviations used in the results chapter.
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Specific parameter values
b = 0.5 n0 = 0.066 R = 15 · 10−2m µ2

S = 0.25
cR = 7.92 · 104 N

m ∆p = 6 · 105 N
m2 δR = 0 ξ = 0.5

mR = 50 kg C = 0.005 · R δS = 0.05 ρ = 1000 kg
m3

m0 = -0.25 L = 0.1 · R µ = 1.295·10−3 Ns
m2 τ0 = 0.45

n = 2

Table 3: Specific parameter values used for simulation.

Modelling

e

dR, cR

mR
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dS

2
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2

S

Figure 1: Minimal model consisting of
a Laval-rotor, a stiff seal ring (visco-
elastically connected to its surrounding)
and an incompressible turbulent fluid
flow streaming the gap between the two
bodies.

The minimal model used for the investigation is shown in figure 1 and
consists of three parts: The first part is a classical Laval-rotor where the
centre of mass S has a mass eccentricity e. It rotates with the constant
dimensionless angular velocity η = Ω

ωR
. The stiff seal ring is the second

part: It is visco-elastically connected to its inertially fixed surrounding
whereby this support allows only for translative motions. The two rigid
bodies move solely in-plane and their physical properties are indicated in
figure 1. Introducing an inertial cartesian system I one can describe the
dynamical behaviour by the dimensionless equations[

1 0
0 1

]
︸ ︷︷ ︸
BMR

~̄r
′′
R +

[
2δR 0
0 2δR

]
︸        ︷︷        ︸

BBR

~̄r′R +

[
1 0
0 1

]
︸ ︷︷ ︸
BCR

~̄rR =
e
C
η2

(
cos(ητ)
sin(ητ)

)
I

+ ~̄F f (∆~̄r) (1)

and[
µ2

S 0
0 µ2

S

]
︸     ︷︷     ︸
BMS

~̄r′′S +

[
2µS κδS 0

0 2µS κδS

]
︸                  ︷︷                  ︸

BBS

~̄r′S +

[
κ2 0
0 κ2

]
︸   ︷︷   ︸
BCS

~̄rS = − ~̄F f (∆~̄r) (2)

where ∆~̄r = ~̄rR − ~̄rS (3)

and (.)′ = d
dτ being the derivation with respect to the dimensionless time τ.

Within this investigation the influence of gravitational forces is not considered. The forces ~̄F f (∆~̄r) originate from the
third part: an incompressible, newtonian, turbulent lubrication film. It is driven by the pressure drop ∆p over the seal
and the rotation ητ of the rotor. The resulting fluid forces act on seal and rotor and are described by the non-linear
Muszynska-model which states

~̄F(∆~̄r) = −
[
µ2

f 0
0 µ2

f

]
︸    ︷︷    ︸
BM f

∆~̄r
′′ −

[
2δ f 2τ fµ

2
f η

−2τ fµ
2
f η 2δ f

]
︸                    ︷︷                    ︸

BB f

∆~̄r
′ −

κ2
f −

(
τ fµ f η

)2
τ f δ f η

−τ f δ f η κ2
f −

(
τ fµ f η

)2

︸                                    ︷︷                                    ︸
BC f

∆~̄r (4)

for the dimensionless force depending only on the relative displacement ∆~̄r. Furthermore,

κ2
f = κ2

f 0(1 − ‖~̄rR − ~̄rS ‖2)−n, (5) δ f = δ f 0(1 − ‖~̄rR − ~̄rS ‖2)−n (6) and τ f = τ f 0(1−‖~̄rR−~̄rS ‖2)b (7)

are defined. The parameters µ2
f , δ

2
f 0 and κ2

f 0 are determined using Childs analytical formulas [4] for short plain seals.
These formulas are based on Hirs’ bulk flow theory which only guarantees good agreement to experiments for an axial
Reynolds-number Ra =

ρLVC
µ

< 105 and satisfactory agreement for a circumferential Reynolds-number Rc =
ρRηωR
µ

< 105

[20]. These numbers are reached at a angular velocity of about η = 30 which will be the upper boundary for all subsequent
considerations. Equation (5) and (6) underline an important limitation of the Muszynska-model: If the dimensionless
distance between rotor and seal centre (relative eccentricity ε = ‖~̄rR−~̄rS ‖) approaches 1, dimensionless stiffness coefficient
κ f and dimensionless damping coefficient δ f tend to infinity since n = 2 was assumed (cf. table 3). Subsequently, this
modelling does not permit contact between rotor and seal which is clearly unphysical. Thus, the relative eccentricity is
not allowed to take on values close to 1.
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Condensing these formulas into a compact notation one obtains

BM︷                         ︸︸                         ︷[
MR + M f −M f

−M f MS + M f

] [
~̄rR
′′

~̄rS
′′
]

+

BB︷                                  ︸︸                                  ︷[
BR + B f (∆~̄r) −B f (∆~̄r)
−B f (∆~̄r) BS + B f (∆~̄r)

] [
~̄r
′
R
~̄r
′
S

]
+

+

[
CR + C f (∆~̄r) −C f (∆~̄r)
−C f (∆~̄r) CS + C f (∆~̄r)

]
︸                                 ︷︷                                 ︸

BC

[
~̄rR
~̄rS

]
=

e
C
η2


(
cos(ητ)
sin(ητ)

)
I(

0
0

)
I

 . (8)

Investigating oscillations induced by unbalance, it is favourable to rewrite equations (8) with respect to a cartesian coor-
dinate system R, which rotates with the angular velocity η and with co-rotating coordinates

r̄R = RqR (9) and r̄S = RqS (10) where R =

[
cos(ητ) − sin(ητ)
sin(ητ) cos(ητ)

]
. (11)

Since ‖~rR − ~rS ‖2 = ‖~qR − ~qS ‖2 holds, inserting equations (9) to (11) into equations (8) gives

M
[
~q′′R
~q′′S

]
+

(
B(∆~q) − 2ηQM

) [~q′R
~q′S

]
+

(
K(∆~q) − ηQB(∆~q) − η2 M

) [~qR

~qS

]
=

e
C
η2


(
1
0

)
R(

0
0

)
R

 (12)

where

Q =


[

0 1
−1 0

]
0

0
[

0 1
−1 0

] . (13)

The transformation leads to autonomous differential equations where equilibrium solutions unequal to zero correspond to
circular (harmonic) rotor and seal limit cycles with a period duration of T̄ = 1

η
.

Results

Balanced Laval-rotor:
Analysis of stability behaviour
Figure 3 shows a stability chart, where the stiffness ratio κ2 = cR

cS
is plotted against the angular speed η. The chart displays

the results of the eigenvalue computation of the perturbation equations corresponding to equations (8), linearised around
the trivial solution. The encircled digits indicate the number of unstable eigenvalues present in the areas separated by a
solid black or grey dashed lines. The letters A and B correspond each to a specific pair of complex conjugated eigenvalues
with positive real parts. The black dot-dashed line is the stability limit of a system with a stiff seal support.
Three interesting conclusions can be drawn: Firstly, the visco-elastic seal support leads to an increased parameter range
with stable solutions. This range is the area between the dot-dashed black and the solid black line.
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cific pair of eigenvalues with positive real parts. Source: [21].
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Secondly, the movability of the seal stabilizes the solution: the stability limit for compliant support approaches the limit
for stiff support with increasing support stiffness and converges to it for higher κ values (see figure 2) where the seal is
less movable. And thirdly, the solutions become unstable due to different complex conjugated eigenvalue pairs: pair A in
the upper left area differs from pair B in the lower right area thereby affecting the shape of the stability limit and leading
to characteristic non-linear behaviour. Both of these pairs have positive real parts in the upper right area.

Analysis of bifurcation behaviour
The qualitative bifurcation behaviour can be represented by two exemplary bifurcation paths: Figure 4 and 5 show the
evolution of radii ‖r̄R,S ‖ of the circular orbits of rotor and seal with the bifurcation parameter η for κ2 = 1 and κ2 = 3
(marked by grey dotted lines in figure 3). Here, solid black lines indicate stable circular seal (dotted) and rotor orbits. Da-
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Figure 4: Bifurcation plot: steady states and circular limit cycles radii
‖~̄rR,S ‖ over dimensionless angular rotor velocity η for κ2 = 1. Solid
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shed light grey lines mark unstable circular seal
(dotted) and rotor orbits. The (un)stable equi-
librium states are represented by (dashed) grey
lines. In figure 4 the steady state solutions loose
their stability via a Hopf bifurcation. It occurs
when the complex conjugates eigenvalue pair
A attains positive real parts. The seal exhibits
medium sized amplitudes whilst the rotor only
displays comparatively small ones: a continued
operation after the loss of stability might be pos-
sible. Time simulation reveals that rotor and seal
always move synchronised with a relative phase
difference of about π. Figure 5 on the other hand
shows a completely different solution behaviour.
Again, the steady state solution looses its stabil-
ity via a Hopf bifurcation but in this instance due
to the eigenvalue pair B. Rotor and seal display
large amplitudes both being bigger than the seal-
ing gap C. This is only possible since both rigid
bodies move synchronised with almost no phase
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Figure 5: Bifurcation plot: steady states and circular limit cycles radii
‖~̄rR,S ‖ over dimensionless angular rotor speed η for κ2 = 3. Solid
lines: stable solutions; dashed lines: unstable solutions; light grey
dashed lines: mean radius of quasi-periodic repellor.

difference. The magnitude of the amplitude
would most certainly prohibit ongoing opera-
tion. Raising the bifurcation parameter η fur-
ther the periodic cycles loose their stability via
a Neimark-Sacker bifurcation. Crossing the area
of the unstable eigenvalue pair A to the area of
A and B in figure 3 an unstable periodic orbit
emerges which gains its stability via a Neimark-
Sacker bifurcation. Please note the qualitative
similarity between these limit cycles and the
ones for κ2 = 1. The two Neimark-Sacker
points are connected by an quasi-periodic repel-
lor (mean radius indicated by light grey dashed
line). The repellor was approximated by time
integration with initial conditions chosen from
the subspace defined by the linearised centre
manifold of the associated Poincaré map. Fast
Fourier Transformation of the quasi-periodic or-
bits of rotor and seal in the neighbourhood of the
repellor reveals again synchronised behaviour.

Unbalanced Laval-Rotor:
Unbalance is always present in rotating parts and can have a major influence on the system at least for increased rotational
speeds. In the present case the mass eccentricity leads to periodic limit cycles of rotor and seal which can also become
unstable: quasi periodic motions are in general the subsequent result. The stability behaviour can be investigated by help
of the Floquet theory. Nevertheless, it is favourable to investigate the occurring phenomena in the co-rotating coordinate
system R. In this subsection all terminology refers to system R followed by the corresponding expression referring to the
inertially fixed reference frame I in brackets (used abbreviations cf. table 2)
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Analysis of stability behaviour
In co-rotating coordinates the stability investigation of periodic limit cycles reduces to an eigenvalue analysis of equilibria.
Therefore, the perturbation equations corresponding to (12) are linearised around the equilibrium position q0 defined in
reference-frame free notation by

(
K(∆q0) − ηQB(∆q0) − η2 M

)
q0 =

e
C
η2


1
0
0
0

 (14)

being dependent on the angular speed η, the stiffness ratio κ and the mass eccentricity e. Results of the computation can be
seen in figure 6 where different grey shadings correspond to the indicated mass eccentricities. The numerical computation
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Figure 6: Stability chart for unbalanced induced equilibria
(PLC) in dependence of stiffness ratio κ2 and dimension-
less angular rotor speed η for different mass eccentricities.

of these charts is way more costly than for the unbalanced
case with up to 20 hours per chart on a standard desktop
computer for a straight-forward high resolution scanning
of eigenvalues. An efficient pseudo-arc-length continuation
has been used instead cutting computation time to under
20 minutes. For very small mass eccentricities the stabil-
ity limit coincides with the limit for the balanced case in
figure 3. Increasing the mass eccentricity entails two inter-
esting effects: On the one hand side the stability area is en-
larged which is an effect also seen on Laval-rotors with in-
ner damping and unbalance. On the other hand side tongues
of extended stability develop when e is raised. Possible ex-
planations will be discussed later on.
Figure 8 displays exemplarily the stability chart for e =

0.15 C. The encircled digits indicate the number of unstable
eigenvalues (Floquet multipliers) present in the separated
areas. The letters C and D correspond each to a specific
pair of complex conjugated eigenvalues with positive real
parts (Floquet multipliers with a norm greater than one).
The black dot-dashed line is the stability limit of a system
with a stiff seal support. Apart from the mentioned stabil-
ity tongue a very similar behaviour to the balanced case is
encountered: The stability limit for compliant seal support
converges towards the limit for a stiff support with increas-
ing stiffness ratio κ (cf. figure 7) which emphasises also in
the unbalanced case the movability of the seal as the sta-
bilizing mechanism. Please note, that the stability limit for
stiff support for an unbalanced system also lies considerably
higher than the limit for the balanced counterpart, which is

in accordance with the findings for the compliant system. In addition to that, solutions become again unstable due to
different eigenvalue pairs (Floquet multipliers) leading to characteristic bifurcation behaviour.

Analysis of bifurcation behaviour
Again, two exemplary bifurcation paths are investigated for κ2 = 1 and κ2 = 7 in order to assess the bifurcation behaviour.
They are indicated in figure 8.
The path for κ2 = 1 is shown in figure 9 and will be discussed in two parts: In the section between η = 0 and the marked
Hopf bifurcation (NSB) grey dotted or solid lines correspond to equilibrium positions of seal or rotor. The dash-dotted
line shows the course of the relative eccentricity ε = ‖~qR − ~qS ‖ where a value of 1 means contact between rotor and seal.
The equilibrium positions correspond to stationary periodic orbits therefore indicating the amplification function for rotor
and seal with two resonance peaks. At the first peak for η = 1.25 high, but bounded values occur (‖~qR,S ‖ ≈ 4, excluded
due to purpose of presentation). However, the relative eccentricity shows that only medium-sized relative displacements
exist: Rotor and seal are unlikely to touch each other despite passage through the resonance. This is a big advantage for
operation purposes. Interpreting with respect to the inertially fixed reference frame I, we see that the relevant eigenvector
corresponding to the critical eigenvalue at the second resonance peak for η = 6.25 leads to an amplification of seal and
reduction of rotor amplitudes. These values settle to more or less medium-sized positions of rotor and seal. The seem-
ingly non-correlated development of the relative eccentricity is explained by the phase difference between seal and rotor:
It changes from an in-phase motion even during the first resonance to a phase difference of ∆ϕ ≈ 2

3π.
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The second part relates to the section on the right of the Hopf bifurcation (NSB). Here, the dashed or solid grey lines
indicate the unstable seal or rotor equilibrium (PLC). Dotted or solid black lines refer to the amplitudes ‖~qR,S ‖ of the
evolving limit cycles (QPLC). When the solutions on bifurcation path 1 cross the solid black line in figure 8 a Hopf
bifurcation (NSB) occurs and the equilibrium (PLC) looses its stability. The solution in coordinate system I moves
then on a 2-torus. Rotor and seal amplitudes stay comparatively bounded although the seal amplitudes evolve rapidly.
Qualitative resemblance with the amplitude progression for the balanced case in figure 4 is present.
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The second bifurcation path is shown in figure 10 and an appropriate plot detail in figure 11. The course of the equilibrium
position (PLC) is apart from the stability properties qualitatively analogues to the one seen in figure 9. The same statement
is true for the course of the relative eccentricity ε (cf. figure 11). Nevertheless, there are two connected quantitative
differences: Firstly, the height of the first resonance peak is reduced by a factor of approximately two. And secondly, the
relative eccentricity displays much larger values in the same area. The explanation is given by the interaction between
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stiffness ration, seal and fluid damping: For the chosen parameter configuration the relation for the fluid damping to the
seal damping δ f ≈ 10 δS holds (rotor damping δR = 0). At κ2 =

cS
cR

= 1 the seal support stiffness is comparatively low and
thus the seal easy to move. The fluid compression or respectively the relative eccentricity is low and therefore the fluid
damping. The large seal movement has no influential contribution to the overall system damping due to the low constant
δS . At κ2 =

cS
cR

= 7 the seal movability is considerably diminished: the relative eccentricity rises. The process is now
dominated by the much higher fluid damping. The overall damping rises and limits the maximal resonance amplitudes.
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Yet, the main differences to figure 9 are the two instability areas. We will now discuss four parts separately.
The first instability of the equilibrium (PLC) occurs between the first and second Hopf bifurcation (NSB) (cf. figure 11).
The solution looses its stability and displays a periodic limit cycle (QPLC) with fast rising amplitudes for seal and rotor.
The orbit then looses for itself stability in a fold bifurcation (SFB) much like in the well known non-linear resonance
curve of a Duffing oscillator. The stability is gained again in a fold bifurcation (SFB) and the limit cycles (QPLC) merges
with the equilibrium position (PLC) in Hopf bifurcation 2 (NSB) (both bifurcations are in close proximity and not shown
separately). Four solutions coexist in the η−interval limited by the corresponding Hopf bifurcation 2 (NSB) and the lower
fold bifurcation (SFB).
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The second part to be discussed
is the interval of the retrieved
equilibrium stability (PLC) be-
tween the second and third Hopf
bifurcation (NSB) (cf. figure
11). In fact, the extended sta-
bility tongues in figure 6 are ar-
eas of synchronisation between
the fluid-induced self-excited vi-
brations and the vibrations due to
unbalance. These tongues cor-
respond in their growth with the
mass eccentricity to the areas of
elevated seal amplitudes due to
the second resonance. Looking
at figure 10 the synchronisation
point coincides most interestingly
nearly exactly with the resonance
peak of the seal amplitude. A
growing synchronisation area can
be caused by an increasing exter-

nal (unbalance) excitation like in the textbook example of an externally forced van-der-Pol oscillator [22]. However, the
rotor amplitude drops in this case in the synchronisation area which is also not symmetric to the second resonance.
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A possible explanation might be the influence of the relative eccentricity (dashed-dotted grey line): Approaching the
synchronisation area with rising η, the relative eccentricity increases leading to higher fluid damping. The raise in damping
might suppress the self-excited oscillations thus synchronising the system. In addition to that the system is due to the
coefficient dependency on η not symmetric around the resonance peak.
The third part is the periodic limit cycle starting from Hopf bifurcation 3 (cf. figure 10). Two interesting aspects are worth
noting: On the one hand, the amplitudes rise very fast very high. This will most certainly prohibit an ongoing operation.
On the other hand, the qualitative course of the amplitudes is comparable to the limits cycle (QPLC) between Hopf
bifurcation 2 and 3: The same eigenvectors D become unstable here being characteristic for the qualitative development.
The fourth part are the unstable limit cycles (QPLC) starting from Hopf bifurcation 4. Here again, comparable behaviour
due to the same eigenvector C becoming unstable can be found in bifurcation path 1 in figure 9. Especially the section
between Hopf bifurcation 3 and η = 30 shows good qualitative resemblance with the second bifurcation path of the
balanced system in figure 5. Due to this obvious analogy it can be assumed that the unstable limit cycles (QPLC) will
gain their stability in a Neimark-Sacker bifurcation (SNSB). Coexisting limit cycles (QPLC) will then be separated by a
3-torus repellor. However, this behaviour is beyond the validity of the used fluid force model for the coefficients.

Conclusion and Outlook

Hybrid seals represent a new design direction with promising potential. In this contribution a simple model of a rotor
system with compliant seal properties has been investigated. The case of a balanced and unbalanced rotor have been
discussed whereby the latter one is of more practical relevance. Compliant support or more specifically the enabled
movability of the seal ring has been shown to lead to an increased stable operation range depending on parameter values.
Raised mass eccentricities lead to a further stabilisation as well as the formation of stability tongues with synchronised
behaviour. For an unbalanced rotor the relative eccentricity, which is the distance between rotor and seal centre stays
bounded and rather small even in case of elevated amplitudes. Therefore, safe resonance passage is enabled. Solution
stability is lost in either Hopf or Neimark-Sacker bifurcations. Ongoing operation thereafter can be possible depending
on the stiffness ratio between seal support and rotor stiffness. Unstable periodic solutions might loose and regain their
stability in Neimark-Sacker or fold bifurcations. Stable periodic solutions can be separated by quasi-periodic repellors.
Future work comprises three major parts: An extended investigation of non-linear effects of the present model with focus
on synchronisation and the non-linear behaviour after a loss of stability (Arnold tongues, chaos) will be conducted, which
requires a fluid model with validity for higher rotational speeds. The second part is a fully coupled FEM simulation
of Hirs’ fluid model in order to gain a deeper understanding for the fluid mechanical influence and to verify the force
coefficient models used in this contribution. Yet unpublished work has already been done in this area. And the third major
part is the construction and commissioning of a test rig, which is in progress.
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