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Summary Our goal in this work is to investigate existence, stabiiihd bifurcations of periodic orbits in a strongly non-linean-
ideal problem. We have rigorously obtained existence abgér orbits as well as a couple of inequalities which gogettreir stability.
Moreover, in a special case turns out that the increasingssifghtion leads to instability of the periodic orbits. Syghenomenon has
been reported in the literature mainly for linear systeis s known as dissipation-induced instability.

I ntroduction

In the literature on non-ideal problems, see for exampledilly weakly non-linear problems are approached. A rigsrou
approach of the dynamics of a weakly non-linear non-ideablegm was performed in [3]. In that paper existence,
stability and bifurcations of periodic orbits, which leadsSommerfeld Effect, were investigated. Our goal in thiskvo

is to investigate the same questions in a strongly non4linea-ideal problem. We have rigorously obtained existerice
periodic orbits as well as a couple of inequalities whicheyog their stability. In a quite particular case of our réesuh

fact in an ideal problem, it was proved that the increasindisdipation leads to instability of the periodic orbits.c8u
phenomenon has been reported in the literature mainlyrieali systems, see [4]. This is known as dissipation-induced
instability. It was necessary to do massive numerical amdb®jic computations, which were performed by the CAS
Maxi ma, htt p: // maxi ma. sour cef or ge. net/ .

The Centrifugal Vibrator
We consider a mechanical system excited IDGamotor with limited supply power, which base is supported @piang.
Besides, thédC motor rotates a small mass, Figure 1. This mechanism is known as centrifugal vibratoiThe

mathematical model is given by the following system:

mid + Bt +cr +dx® = mr? cos @ + mr@sin @, )
I = M(p)+ mridsing + mgrsin p.

For details of this model see [3]. The functidf (-) is the difference between the driving torque of the sourcenefrgy
(motor) L (¢) and the resistive torque applied to the rotor. Such functib(t) is obtained from experiments. We can

rewrite the equations of motiofl) as a system of first order. Také = le as = —-L2-, as = L, a4 = a5 = =,

™mi my
ag = L, Mi(¢) = M. Now, let us introduce a small parametén these parameters. Let us replace the parameters
a;, 1 # 3 andw by ea;, i # 3 andew respectively. Moreover, let us substituté (¢) by e M7 (). Then by making
x1 =z, xa = &, x3 = @, x4 = ¢ In (1), it is obtained a fourth order system which unperturbed jpadlves the term
azz$. From now on jacobian elliptic functions will be used in trexhsteps. The jacobian cosine with modulys/2 is

denoted byn (¢,1/+/2) and its period byk,. By takingz, = C cn (D, %) , @y = /a3 C% en/ (D, %) in this fourth
order sytem, applying the usual reduction process in thaildd equation and using the following change of variables
D (x3) = Dy (z3) — % in the reduced system,one obtains

(2 a3 a4 T4> cos(z3) en’ (D1 - kg :3 ,%)-ﬁ—ag C? (ag—ag en? (D1 - kg :3 ’\/Li)))

dcC

dzs 0 2a3 74 C
dDq (ag az C? cn(lekU 23 i) cn'(lekU 23 i)+\/a3 a4 T4’ cos(xg,)cn(D i)) 2
dz = U2 +e| _ 27 V2 27 V2 V2 JFO(E)
3 a3 x4 C2
dxy 0
drs _ oo Olsin(ag) en (D1 =858 35) () () g sin(as)
T4 T4
(2)
27 /asz C+koxyg

Whereuog = Up2 (C, $4) =

2T Xy
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Existence of Periodic Or bits

Our theorem of existence is the following one. Let us assumagthe following conditions are valid. The next inequality
holds and there i¢a, b, ¢) such that

k3 as (ke — ko) cosh(%) ‘ <L M (_27r\/@6) B ko k1 as (ke — ko) /a3 as cosh (%) @’ 3)
2%7r4\/ﬂa4 T ko 2% 1t ay ’
sin 27h _ k;3 as (lff — ko) cosh (g) o= 27a \/@1*; (2#,6, b)7 @
ko 22 1 as a4 k()
1 2 a
2% 7 ay M| (—FT\/@G) — 3 k3 ksaz (ke — ko) a5cosh( ) @ #0, (5)
0

wherekg = J"Oko en? (u, f)du ks = fo cn ( , f) cos (2,3—0“) du andF (s, a,b) has a huge expression and it will
be omitted here. Then (2) has periodic solutions for alt adequately small. This result is rigorously proved by using
the Regular Perturbation Theory and the Poincaré Method ot geference is [2].

Stability

Let h (s, €) be the2r periodic solution obtained in the foregoing section. Byngsthe Regular Perturbation Theory one
obtainsh (s,€) = ho (s) + h1 (s) e + O (¢2) wherehg, hy as well as the remaind@ (e?) are2r periodic mappings
which are explicitly computed. The symbolic computatiomgolved in are really big ones. The linearization of (2)
at h yields a2r periodic time dependent linear systefh(s) = A(s,e)y(s), whereA is a3 x 3 matrix. Let us
denote the principal matrix of this system By (s, e) where N (0,¢) = identity matrix . The monodromy matrix is
given by N (¢) = M (2, ¢€). Again, by using the Regular Perturbation Theory in thigesys one obtainsV (s,¢) =
No (s) + Ni(s) e + O (¢?). The symbolic computations involved in the obtaining\f, N; are big ones too. Consider

p (¢, 2) the characteristic polynomial a¥. It can be proved tha@@ =284+ ca(€)22 +c1(€) 2+ c1(e). The

Implicit Function Theorem can be applied in the right hartesif the last equation. One obtains that the reots,, r3
of p are given byr; (¢) = 1 + die+ O (e%) ro(€) = 1 +iej/e+ eze + O (e%) wheree, e5 are real numbers.

And, r3 (€) is the complex conjugate of, (¢). All coeficients are explicitly computed. #f; < 0 and2e; + €2 < 0 then
|r1 (6) | < Tand|re ()| < 1fore << 1. Itis well known this leads to the stability of the periodidi. Otherwise, if
di > 0 0r2es + 2 > 0 the the periodic orbit is unstable.

Dissipation-induced instability in theideal case

Now let us to investigate a quite special case whén(-) = Cy, Cy constant. This leads to an ideal mechanical system.
In view of (3) there is an upper bound for the dissipatjiesi which will be denoted by. From the results in the last
section, it can be proved if the parametessay, a5 are fixed withl < a3 < 3, take the applied torqu€, adequately
big then if |a2| is small then the periodic orbit is stable. || is nears then the periodic orbit is unstable. This means
the increasing of dissipation leads to an unstable periodiit. Such kind of phenomenon is known in the literature as
dissipation-induced instability, for details see [4]. ligh be emphazised the examples in given in [4] are linear.ones

Conclusions and Acknowledgements

By using a special change of variables, involving elliptiodtions, in a strongly non-linear non-ideal problem gioest

on existence, stability and bifurcation can be efficienip@ached. Particularly, the stability of the orbits aratcolled

by two inequalities. In a particular case, which is an idealbtem,it was found out the phenomenon of dissipation-
induced instability. The next steps will be to investigdte ocurrence of such phenomenon, as well as,of the Somuherfel
Effect in other strongly non-linear systems.
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