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Summary. The current research considers nonstationary responses in reduced-order model (ROM) of partially liquid-filled tank under 

external forcing. The model involves one common degree of freedom for the tank and a non-sloshing liquid, and the other one – for the 

sloshing portion of the liquid. The coupling between these degrees of freedom is nonlinear, with the lowest-order potential allowed by 

symmetry considerations. Since the mass of the sloshing liquid in realistic conditions does not exceed 10% of the total mass of the 

system, the reduced-order model turns to be formally equivalent to well-studied oscillatory systems with nonlinear energy sinks (NES). 

Exploiting this analogy, and applying the methodology known from the studies of the systems with NES, we predict a multitude of 

possible nonstationary responses in the considered ROM. These responses conform, at least on the qualitative level, to the responses 

observed in experimental sloshing settings, multi-modal theoretical models and full-scale numeric simulations.  

 

Introduction 

 

Partially filled liquid storage tanks of different shapes are used in many engineering fields, including vehicles, sea 

crafts, aircraft, for the storage of various, maybe hazardous, liquids. The term “sloshing” refers to oscillatory relative 

motion of the liquid with respect to the containing vessel. The liquid sloshing may be hazardous for the vessel safety, 

since dynamic loads related to the sloshing may have direct and rather strong calamitous effect on the vessel stability 

and robustness. So far, elaborated analytical studies are limited to small-amplitude sloshing in rectangular and 

cylindrical vessels. Thus, efficient numerical and analytic tools are desired for assessing the coupling between the 

fluid and tank motions. While being most interesting and potentially hazardous, high-amplitude liquid sloshing in 

partially filled vessels still lacks thorough analytic representation. The sloshing liquid has infinite number of degrees 

of freedom; boundary conditions on the free surface are nonlinear and time-dependent. Near resonance, the nonlinear 

dynamical features may take place, for example multiple periodic solutions ('jump' phenomenon) [1], weakly quasi-

periodic [2], [3] and strongly modulated responses [4]. Based on experimental results, it was pointed that cubic spring 

seems to describe the dynamical regimes in the best way. The nonlinear high-amplitude oscillations are modeled by 

addition of a cubic spring to the linear stiffness, describing both linear small-amplitude and nonlinear high-amplitude 

sloshing regimes. Conditions for existence and coexistence of periodic steady-state, weak-quasiperiodic and strongly 

modulated response (SMR) are obtained. The slow invariant manifold (SIM) describing the system slow flow-

dynamics of 1:1 internal resonance is derived by multiple-scale analysis of the system. Finally, the results are 

compared qualitatively with previous experimental and computational data and show good agreement in terms of 

dynamical regimes. It is noteworthy that the framework of the presented asymptotic analysis is not limited to a 

specific tank shape. Besides, we assume infinite roof height in order to eliminate both liquid spilling and interaction 

between the fluid and the tank roof. 

 

Model description and governing equations 

 

Mechanical models of liquid sloshing often use an infinite series of pendula or mass-spring systems to represent the 

free liquid surface oscillation using infinite series of sloshing modes. These models, primarily developed using linear 

sloshing theory, are developed for various types of tank geometries and excitations. As shown by Abramson [1], the 

mass of each modal pendulum decreases rapidly with increasing mode number (figure 1(b)).  

a) b)  

Figure 1-a)Scheme of multiple sloshing modes in partially-filled tank represented by a series of mass-spring systems; b) Ratios of the 

first three asymmetric sloshing modal masses and fixed mass m0 to the total fluid mass mf for cylindrical vessel; dotted-line, dashed-

dotted-line ,dashed-line, solid-line, respectively. 
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Consequently, it is reasonable to take into account only the first mode in the mechanical equivalent model, as long as 

the excitation frequency is far from natural frequencies of the higher modes. The internal particle is located inside a 

straight cavity in the primary structure, and in contrast to earlier explored cubic NES [5], in addition to the cubic 

attachment represented by spring k , it is attached also through a linear viscosity c and linear spring with stiffness
1k  

that represents the liquid first sloshing mode mass m. The linear spring is required to mimic the small-amplitude 

oscillatory sloshing motion due to gravity. By this addition we expect to observe several corrections to the results for 

the cubic NES. The cubic coupling is required to mimic moderated and high-amplitude sloshing, that according to 

earlier studies involve nonlinear characteristics associated with the cubic term. The external forcing is considered to 

be harmonic, with frequency  and amplitude A .  

 
Figure 2-System scheme- linear oscillator as the primary system and internal particle with both linear and cubic attachments. The 

displacements of the primary mass and the impacting mass are denoted as u and v, respectively. 

 

 

Hardening nonlinearity, corresponds to fluid level of *h h  and positive value of parameter k, whereas softening 

nonlinearity corresponds to *h h  and negative value of parameter k. By using the extended Hamilton's principle, we 

apply simple manipulations and time normalization t   to yield the following non-dimensional equations of 

motion: 
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Here dots represent differentiation with respect to the normalized time  , and the non-dimensional parameters 

governing the system dynamics are as follows: 
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The following coordinate transformation is used: 
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Here w  is the relative displacement of the internal particle with respect to the primary structure, and coordinate X is 

proportional to the displacement of the center-of-mass. The transformed non-dimensional equations of motion: 
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described analytically. 
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Asymptotic description of dynamical regimes 

 
We refer to two types of quasiperiodic responses; the first one is weak quasiperiodic response, which corresponds to 

supercritical loss of stability of the periodic regime and limit cycle formation through Hopf bifurcation. The second 

quasiperiodic regime, referred to as strongly modulated response (SMR), is associated with relaxation oscillations 

which are characterized by alternating fast and slow response amplitude variations. Detailed investigation of those 

regimes is described by Starosvetsky and Gendelman [5]. Asymptotic analysis of the resonance regimes mentioned 

above is achieved by complexification-averaging and multiple scales methods. 

a)        b)  

Figure 3- Projection of the saddle-node and Hopf bifurcations for: 4 3, 5, 0.05k     ; SN bifurcations: solid line, Hopf 

bifurcation: dashed line. a) Red: 0  , blue: 5  , black: 10  (color online); b) for 5  , point 1: 0.1A  existence of 

periodic solutions; point2: 1A  coexistence of both weakly and strongly quasiperiodic regimes; point 3: 1.4A   coexistence of 

both periodic and strongly quasiperiodic regimes. 

 

As one can see in Figure 3(b), the bifurcations locus consists of three different zones: point 1: existence of periodic 

solutions; point2: coexistence of both weakly and strongly quasiperiodic regimes; and point 3: coexistence of both 

periodic and strongly quasiperiodic regimes. If we take A as a bifurcation variable and   as a parameter, we can 

calculate the critical maximum value of   for SN bifurcation. The same method with respect to   yields the critical 

value of A: 
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Critical damping value for existence of Hopf bifurcation 
,H cr is obtained by equating both of them: 

 
 

,

1 1

13
H cr


 




 


   (6) 

Hopf and SN bifurcations diagrams for fixed values of parameters corresponding to the three points are 

presented in Figure 4 (a-c).  

a) b) c)  

Figure 4- SN bifurcations (marked by traingles) and Hopf bifurcations (marked by stars) diagram for: 

4 3, 5, 0.05k     ,
, ,5 0.268, 0.577cr H cr SN      . Stable solutions- solid lines, unstable 

solutions- dashed line; a)
,0.6 cr SN   ; b)

, ,0.4cr H cr SN     ; c)
,0.1 cr H   . 
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Numerical results 

 
In the following section, we compare the analytical predictions of the modulation envelope of the averaged system 

with numerical simulations of the full equations of motion (4). Following Figure 3(b), we examine the case that 

corresponds to the following parameter set: 4 3, 5, 0.05, 5k        for different values of A and . The case 

of single periodic solution, corresponding to point 1 in Figure 3(b) and Figure 4, is shown in Figure 4 in terms of time 

history simulation and slow flow evolution on the SIM. The case of multiple periodic solution (amplitude 'jump' 

phenomenon), corresponding to point 2 in Figure 3(b), is shown in Figure 5. The case of coexistence of both periodic 

solution and weakly quasiperiodic regime, corresponding to point 3 in Figure 3(c), is shown in Figure 6: 
 

a) b)  

Figure 4- single periodic solution, corresponding to Figure 4(a): 4 3, 5, 0.05k     , 1A   

, ,5 0.268, 0.577cr H cr SN      ,
,0.6 cr SN   . Initial conditions: 0 0u v  0 0 0u v   

 

 

a) b)  

c) d)  

Figure 5-double periodic solution, corresponding to Figure 4(b): 4 3, 5, 0.05k     , 1.62A ,

, ,5 0.268, 0.577cr H cr SN      ,
, ,0.4cr H cr SN     . 

Initial conditions: a) 0 0u v  0 0 0u v  , b) 0 0 0u v  0 0.5u  0 0v  . 
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a) b)  

Figure 6- Quasi-periodic solution, corresponding to Figure 4(c): 4 3, 5, 0.05k     , 1.4A  ,

, ,5 0.268, 0.577cr H cr SN       ,
,0.1 cr H   . Initial conditions: 0u  0 0v  , 0 0.5u  , 0 0v  . 

a) b)  

Figure 7- SMR regime: 4 3, 0, 0.05, 1k       , 0.3A   ,
,0.2 0.176cr SMRA A     . Initial 

conditions: 0 0.29u  0 0.5v   , 0 0.9u  0 0.15v   . 

 

 

 

 

Qualitative comparison with computational and experimental results 

 
As mentioned in the introduction, many experimental and computational studies were performed in the field of 

weakly-nonlinear response regimes analysis of liquid sloshing in partially-filled tank subjected to horizontal periodic 

ground excitation. The vast majority of the sloshing regimes documented are two dimensional. The dynamical 

regimes revealed in previous sections are compared qualitatively with several experimental and computational 

studies. As one can observe in Figure 3, the comparison show qualitative similarity between the weakly-nonlinear 

dynamical regimes revealed with the help of the relatively simple reduced-order model introduced in the current study 

and the documented results. 

a)  b)  
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c)   d)  

Figure 8- Nonlinear beatings response regime in partially-filled rectangular tank subjected to horizontal periodic excitation. Free-

surface elevation at the left wall in horizontally excited tank ; a) Faltinsen [2] ;b) Hill [65]; c) comparison between Frandsen and 

Faltinsen [3]; d)current model for parameter set: 0.4, 0.3, 0.2, 0.1, 5A k        ;c) Strongly modulated response 

reigime (SMR); c)Zhang et al. [4]; d) Current model for parameter set: 0.2, 0.3, 1, 0, 0.01, 4 3A k         . 

 

 

Conclusions 

 

Novel relatively simple two dimensional design of equivalent mechanical model was suggested for qualitatively 

describing and understanding the different nonlinear sloshing regimes and their leading mechanisms. The model uses 

well studied cubic NES systems methods to describe non-planar and weakly nonlinear sloshing regimes inside a 

partially filled vessel subjected to horizontal ground motion. The analytical predictions were validated numerically. 

Finally, qualitative comparison shows agreement between the regimes detected by this model and the regimes 

documented experimentally and numerically. This mechanical model paves the way towards a better stress 

assessment method for different engineering purposes. 
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