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Control of a Cart With Oscillators Under Uncertainty
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Summary. A control problem for a system, consisting of a cart with attached to it several linear oscillators is considered. The cart

moves along a horizontal line under the action of a control force and unknown disturbance. The phase states of the oscillators are
assumed to be not available for measuring. A bounded feedback control which in a finite time brings the cart to the prescribed terminal
state from the neighborhood of it is proposed.
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Statement of the problem

Consider a cart with mass m moving along a straight line on a rough horizontal surface with attached to it n linear
oscillators. Oscillators are assumed to be horizontally oscillating material points with masses m;, connected with the cart
via springs with spring constants ¢;, ¢ = 1,2, ..., n. The cart is acted by a control force u and unknown disturbance v.
The motion of the system is described by equations
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where x describes the position of the cart on the horizontal line, y; — elongation of the spring of the i-th spring-mass
oscillator, ¢ = 1,2, ...,n. The masses and spring constants of the oscillators are assumed to be unknown and their phase
coordinates and velocities ¥;, y; are not available for measuring. The disturbance v is unknown too and obeys the condition

()] <V, V>0
A feedback control function as a function of variables x, &, that meets the constraint
lu(x,&)| <U, U>0 (2)

should be designed, such that it brings the cart to the origin in a finite time. The states of the spring-mass oscillators are
irrelevant at the moment when cart reaches the origin.

Several assumptions are made: control resources exceed the disturbance, initial energy of the spring-mass oscillator
system is small and the cart is close enough to the terminal state at the initial time moment.

Control algorithm

To solve the above-formulated problem we use the approach, proposed in [1,2]. Let the control function be
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Here the function T'(z, &) is implicitly defined by the equation
dT* — 6°T? — 2422T — 362> =0, d>0 (4)

As it is determined in [1], the equation (4) has the only one positive solution for 7" in the whole phase space z, © except
zero. This solution is given by an analytic function as the relation (4) is a polynomial equation for 7" with coefficients,
depending on the phase variables x, &:. Moreover, the function T'(z, &) can be defined at zero as 7'(0,0) = 0, which
preserves the continuity of it.

The coefficients of the feedback control function (3) at phase variables z, ¢ infinitely increase when these phase variables
tend to zero. However, the control (3) is bounded in the whole phase space: the special choice of the parameter d in the
equation (4) ensures the constraint (2).

Let
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Together with the initial system (1) one may consider the following equation
F=u+f )

where f is treated as an uncertain disturbance. As it is shown in [2], the derivative of the function 7" according to equation
(5) in the absence of the disturbance (i.e. f = 0) obeys the inequality

T<0
Moreover, as it is proven in [3], the derivative of the function T according to equation (5) meets the inequality
T < -y, >0

under the condition
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Consider the Lyapunov function
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This function is positive-definite and the derivative of it according to system (1) is written as

V:foiczyi
i=1

The main result of the present research is formulated in the following theorem.
Theorem. There exists Vo > 0, such that for trajectories of system (1), (2), starting in the neighborhood of the origin of
the phase space x, &y, y, given by the relation V (x, &, y,y) < Vo, the following inequality holds

V<0
Moreover, along these trajectories

T<—U7 oc>0

It follows from the Theorem, that the function T'(x, &) vanishes to zero in a finite time, i.e. every trajectory of equation
(5) reaches the origin of the phase space x, « in a finite time. This means that the cart will be stopped and further be held
in the origin by control (2).
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