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Abstract

We apply the recently formulated technique of Slow-Fast Decomposition (SFD) towards
the model order reduction of a von Kármán beam. SFD deals with the identification and
calculation of slow manifold(s) in the underlying full system, which attracts nearby solution
at rates faster than typical rates with the manifold, thereby allowing for a mathematically
rigorous model reduction. This is a natural consquence of the geometric singular perturbation
theory, applicable to special systems characterized by a dicotomy in time-scales. The beam
is characterized by gemetrical nonlinearties and viscoelastic material damping and is an ideal
candidate for application of SFD since it is characterized by the desirable stiff and flexible
degrees of freedom in the axial and the transverse directions of motion, respectively.

1 Introduction
For general finite dimensional mechanical systems of the form

M(q, t)q̈ + F(q, q̇, t) = 0, (1)

where M ∈ Rn×n is a non-singular mass matrix, F(q, q̇, t) ∈ Rn is the vector containing the
internal and external forces, Haller and Ponsioen [3] discuss the decomposition of the generalized
displacement vector q as

q =

[
x
y

]
, x ∈ Rns , y ∈ Rnf , ns + nf = n,

where x and y label the potentially relatively flexible (slow) and stiff (fast) unknowns, respectively.
This potentially slow/fast dependence is explicitly modeled by a small physical parameter ε in the
system and considering M and F as smooth function of y

ε . The system (1) can then be written in
the following inertially-decoupled form:

M1

(
x,

y

ε
, t; ε

)
ẍ−Q1

(
x, ẋ,

y

ε
, ẏ, t; ε

)
= 0,

M2

(
x,

y

ε
, t; ε

)
ÿ −Q2

(
x, ẋ,

y

ε
, ẏ, t; ε

)
= 0,

where M1 ∈ Rns×ns , M2 ∈ Rnf×nf are mass matrices which can be derived from M(q, t), and the
terms Q1 ∈ Rns , Q2 ∈ Rnf are the forces on the slow and fast degrees of freedom respectively.
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Haller and Ponsioen [3] deduced conditions under which such a partition leads to an exact reduced-
order model (as defined by Haller and Ponsioen [3]) of the system (1). After the introduction of
mass-normalized forcing terms using a new variable η = y

ε as

P1(x, ẋ,η, ẏ, τ ; ε) = −M−11 Q1 (x, ẋ,η, ẏ, t; ε) ,

P2(x, ẋ,η, ẏ, τ ; ε) = −εM−12 Q1 (x, ẋ,η, ẏ, t; ε) , (2)

these conditions are given by:

(A1) Nonsingular extension to ε = 0: Both P1 and P2 must possess smooth extension to their
respective ε = 0 limits.

(A2) Existence of a critical manifold: The algebraic equation P2(x, ẋ,η,0, τ ; 0) ≡ 0 can be
solved for η in terms of (x, ẋ, τ) on an open bounded domain D0 ⊂ Rns × Rns × T . Such a
solution, denoted as η = G0(x, ẋ, τ), represents the critical manifold.

(A3) Asymptotic stability of the critical manifold: The equilibrium solution η ≡ 0 ∈ Rnf of
the unforced, constant-coefficient linear system

η′′ +−∂ẏP2(x, ẋ,G0(x, ẋ, τ),0, τ ; 0)η′ +−∂ηP2(x, ẋ,G0(x, ẋ, τ),0, τ ; 0)η = 0

is asymptotically stable for all fixed parameter values (x, ẋ, τ) ∈ D0.

The main result of Haller and Ponsioen [3] establishes general expression for this reduced-order
model for all (x, ẋ, τ) ∈ D0 as

ẍ−P1 − ε
[
∂ηP1G1(x, ẋ, τ) + ∂ẏP1H0(x, ẋ, τ) + ∂εP1

]
+O

(
ε2
)

= 0,

which describes the reduced flow over a 2ns-dimensional invariant manifold (called the slow manifold)
along which the position and velocities in the stiff unknowns (y,ẏ) can be expressed as a graph over
the flexible ones (x,ẋ). Furthermore, if these conditions are satisfied, then the trajectories of the
full system (close enough to the slow manifold in the phase space and ε small enough) synchronize
with the reduced model trajectories at rates faster than those within the slow manifold.

2 SFD of von Kármán beam
Symbol Description (unit)
L Length of beam (m)
h Height of beam (m)
E Young’s Modulus (Pa)
κ Viscous damping rate of material (Pa s)
ρ Density (kg/m3)
τ Non-dimentionalized time

A suitable non-dimensionalization of the Partial Differential Equations (PDEs) governing the
behavior of a flat von Kármán beam (cf. Reddy [1]), along with assumptions of Kelvin-voigt for
modelling material viscoelasticity and uniform, rectangular cross section, leads to the following
non-dimensionalized PDEs:

ẅ +
1

12
∂4xw +

ζε

12
∂4xẇ −

1

ε
∂x (∂xu ∂xw)− ζ∂x(∂xu̇ ∂xw)

−1

2
∂x (∂xw)

3 − ζε∂x
(

(∂xw)
2
∂xẇ

)
= αq(x, τ) , (3)

ü− 1

ε
∂2xu−

ζ

ε
∂2xu̇−

1

2ε
∂x (∂xw)

2 − ζ∂x (∂xw∂xẇ) = βp(x, τ) ,
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where the beam is aligned along the x direction in the undeformed state, u(x, τ), w(x, τ) denote
the displacements in the axial and transverse direction of the beam, respectively, ε = h

L is the beam
thickness to length ratio, α, β are load scaling parameters, ζ = κρ1/2

E3/2L
is a dimensionless constant.

Upon Finite-Element discretization of the non-dimensional system (3) with cubic shape functions for
w and linear shape functions for u (see e.g. Crisfield [2]), we obtain the finite-dimensional discretized
version of (3) as

M1ẍ + ζε (K1 + C(x)) ẋ + ζD(x)ẏ + K1x +
1

ε
F(x,y) + G(x) = αq(τ) ,

M2ÿ +
ζ

ε
K2ẏ + ζE(x)ẋ +

1

ε2
K2y +

1

ε
H(x) = βp(τ), (4)

where x ∈ Rns ,y ∈ Rnf are the finite dimensional (discretized) counterparts of the unknowns w, u
respectively (ns, nf being the number of unknowns dependent on the finite-element discretization),
and M1,K1 ∈ Rns×ns and M2,K2 ∈ Rnf×nf are the corresponding mass and stiffness matrices.
Furthermore, F (a bilinear function in x,y), G (a cubic function in x), H (a quadratic function in
x) correspond to the nonlinear elastic force vectors in the beam, and C (a quadratic functionin x),
D (a linear function in x), E (a linear function in x) correspond to the nonlinear damping matrix
contributions.

It can be shown that (A1)-(A3) are satisfied for the system (4), and as deduced for general
mechanical systems by Haller and Ponsioen [3], the system admits an exact reduced order model
given by:

M1ẍ + K1x + F (x,G0(x, ẋ, τ)) + G(x)+

ε

∂ηF (x,η)G1(x, ẋ, τ)︸ ︷︷ ︸
conservative correction

+ ζ (D(x)H0(x, ẋ, τ) + (K1 + C(x)) ẋ)︸ ︷︷ ︸
damping terms

+O(ε2) = αq(τ), (5)

where

G0(x, ẋ, τ) = −K−12 H(x) ,

H0(x, ẋ, τ) = −K−12 [∂xH(x)] ẋ ,

G1(x, ẋ, τ) = −ζ
(
H0(x, ẋ, τ) + K−12 E(x)ẋ

)
+ βK−12 p(τ) . (6)

It is interesting to see that the reduced order model (5) is conservative (contains only inertial and
elastic force terms) at the leading order, where as the full system (4) is characterized by viscoelastic
damping. The O(ε) terms in the reduced-order model contain these damping contributions, and
hence are important from a physical point of view. Apart from the damping contributions, there
also exists a conservative correction at the O(ε) level which also includes the static response of y
variables to the corresponding loading βp(τ) (cf. expression for G1(x, ẋ, τ) in (6)).

3 Preliminary results
We consider a beam with geometrical and material parameters given by: length L = 1 m, thickness
to length ratio ε in the range from 10−4 − 10−2, Young’s Modulus E = 70 G Pa, densityρ = 2700
Kg/m3, material viscous damping rate κ = 108 Pa s. We use a spatially uniform load on the beam
in the axial as well as the transverse direction given by α = 1 , β = 1, q(x, τ) = p(x, τ) = sin (ΩT0τ),
where T0 = L

ε

√
ρ
E is the constant used to non-dimensionalize time and Ω is the loading frequency

(chosen to be the first natural frequency of the beam in this case). Using these parameters we obtain
ζ ≈ 7.2739.
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Figure 1: Comparison of solution for slow and fast variables in reduced solution with their full
nonlinear and linearized counterparts for ε = 10−4. Note that for such small values of ε the reduced
model at the leading order (containing only conservative terms) is a good enough representation of
the full system, and is practically identical to ROMs obtained by inclusion of the O(ε) and O

(
ε2
)

terms.
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Figure 2: Comparison of solution for slow and fast variables in reduced solution with their full
nonlinear and linearized counterparts for ε = 10−3 . The reduced model at the leading order not
accurate enough, O(ε) terms (which include damping contributions) required to improve accuracy.

We observe that for ε of order 10−4, the reduced-order at the leading order (which is conservative)
provides a good approximation for the full system. The O(ε) terms, however, become important
when ε is of order 10−3 since they include the damping contributions which also become significant
as ε increases. Further increase of ε to values higher than 10−2 leads to significant loss in accuracy
of the reduced model. It is then interesting to compute the O

(
ε2
)
terms in the reduced model and

check the effect on accuracy. The corresponding results are under process.
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4 Current work and Conclusion
We constructed and tested a reduced-order model for the von-Karman beam using the slow-fast
decomposition (SFD). This reduced-order model (5) has the advantage that the slow manifold is
a global structure in the phase space which attracts trajectories off the slow manifold with rates
faster that those within the slow manifold, as opposed to being local when the reduction is justified
only in a neighbourhood of an equilibrium point in the phase space. Though the SFD reduction is
robust and effective, the reduced system contains ns unknowns, which can still be presumably large.
Particularly in the current beam example, due to the chosen shape functions for discretization, it is
easy to see that the reduced model (5) obtained from SFD would still contain two-third of the total
number unknowns in the full system (4).

The eigenvalue analysis of the linearized SFD-reduced system shows the existence of a further
separation in time scales, thus indicating a few linear modal subspaces around the equilibrium
which are slower than the rest. The smoothest invariant manifold which is tangent to and local
extension of a linear modal subspace is known as the Spectral Submanifold (SSM), as introduced by
Haller and Ponsioen [4]. These SSMs corresponding to a slow subspace ( i.e. the subspace spanned
by eigenvectors corresponding to eigenvalues with lowest magnitude real parts) are expected to
be useful in further reduction of a SFD-based reduced model (5) and is the focus of our current
work. This is especially useful when the system exhibits slow and fast time scales, but SFD is not
applicable either due to the conditions (A1)-(A3) not being satisfied, or a partition of unknowns of
the mechanical system into slow and fast degrees of freedom not being intuitively clear.
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