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Summary. We present a new information-theoretic framework for trajectory-based characterisation of transport and mixing in stochas-
tic dynamical systems which are non-autonomous and known over a finite time interval. This work is motivated by the desire to
study time-dependent transport and provide Lagrangian (i.e., trajectory-based) predictions in multi-scale systems based on simplified,
data-driven models with errors affecting path-based predictions in a non-local fashion. In deterministic dynamical systems techniques
exploiting stable and unstable manifolds of finite-time hyperbolic trajectories or finite-time Lyapunov exponents (FTLE) are frequently
used as a means to estimate transport barriers. Alternatively, a formulation relying on spectral properties of (probability) transfer op-
erator leads to identifying almost-invariant sets which remain ‘quasi-coherent’ under the dynamics. While these techniques often give
compatible numerical results in the deterministic setting, a rigorous connection between the two approaches has remained elusive. Here,
we provide a mathematical link between the two approaches in the case of deterministic dynamics, and we extend the framework to
deal with transport and evolution of path-based uncertainty in stochastic flows. In this new framework the average finite-time expansion
along trajectories in stochastic dynamical systems is based on a finite-time rate of certain probabilistic divergencies which provide a
notion of ’distance’ on manifolds of probability measures and capture nonlinear stretching from the growth of cross-entropy under the
stochastic flow. Finally, we develop a numerical method to illustrate the relationship of the new probabilistic approach to FTLE fields
in the deterministic setting, and to illustrate the uncertainty bounds on path-based functionals in the general stochastic setting.

Extended Abstract

Organised or ‘coherent’ structures in fluid flows have been a subject of intense study for some time, especially since the
seminal paper of Brown and Roshko [2]. The dynamical systems approach to describe and quantify general transport
concepts based on the structure and topology of trajectories, x(t) = ϕtt0(x0), determined by the flow, ϕtt0 :M→M, on
the phase manifoldM became widespread in the 1980’s and 90’s. These efforts have led to various notions of ‘organised
structures’ in the underlying flows, as well as a variety of techniques for determining the existence of such objects.
Historically, the developed approaches fall roughly into two classes:

(i) Geometric/topological methods which make use of flow-invariant manifolds of certain hyperbolic sets and the so-
called Lagrangian coherent structures,

(ii) Probabilistic techniques which exploit spectral properties of an operator evolving probability densities, leading to
notions of almost-invariant and finite-time coherent sets.

Hyperbolic trajectories and their associated stable and unstable manifolds have provided the first mathematical approach
to this problem - in both the periodic and aperiodic time-dependent deterministic settings - with applications dating back
to the beginning of studies of ‘chaotic advection’ in fluid flows (e.g., [11]). Apart from the purely theoretical aspects
a major motivation for these efforts arose from the desire to study time-dependent transport and provide Lagrangian
(i.e., trajectory-based) predictions in geophysical flows; more recent applications include trajectory-based predictions in
molecular dynamics or systems biology based on simplified models with errors affecting the dynamics in a complicated
and non-local fashion. Important obstacles for deriving a general theory of Lagrangian transport arise from the need to
account for the effects of transient phenomena (e.g., time-localised mixing) which cannot be captured by the infinite-time
notions (e.g., hyperbolicity, ergodicity, etc.), and to account for errors and uncertainty in trajectory-based functionals
inferred from reduced-order models. In deterministic non-autonomous dynamical systems (M, I, ϕtt0) on a finite time
interval I with the flow map ϕts◦ϕst0=ϕtt0 onM such that t0 ≤ s ≤ t, for t0, t ∈ I, generalised techniques exploiting
notions of stable and unstable manifolds of finite-time hyperbolic trajectories, or finite-time Lyapunov exponents (FTLE)
and related stretching indicators are frequently used as a means to estimate transport barriers. These geometric structures
in non-autonomous flows, be it invariant manifolds of hyperbolic sets or their approximately invariant generalisations, are
known to play a key role in dynamical transport and mixing (e.g., lobe dynamics [12, 13]). In particular, the approximately
invariant ‘Lagrangian coherent structures’ are often studied computationally (e.g. [9, 10, 1]) based on FTLE maps whose
ridges may indicate transport barriers. Alternatively, probabilistic approaches - originating from [3, 4] and so far largely
confined to deterministic systems - focus on the evolution of probability densities on trajectories with the aim to detect
regions in the phase manifold M that are, on average, little affected under the flow of the dynamical system. These
regions are known as almost-invariant, finite-time coherent sets, or time-asymptotic coherent sets (e.g., [7]) depending
on whether eigenvectors, singular vectors, or Oseledets vectors of the associated transfer operator acting on probability
densities are considered. Both approaches (i.e., geometric and probabilistic) have advantages and disadvantages, but
usually give compatible answers in deterministic case studies [7, 1]. However, rigorous or even formal results on the
connection between the two frameworks remain elusive (e.g., [8]). The results presented in this paper are threefold:

(I) We propose a new information-theoretic methodology for estimating both the average finite-time expansion along
trajectories, as well as the evolution and bounds on uncertainty in non-autonomous stochastic dynamical systems.

(II) We provide a further insight into the mathematical link between the approaches (i) and (ii) in the case of determin-
istic dynamics by deriving bounds on the FTLE fields in terms of certain information measures and vice versa.

(III) We systematically extend the theoretical framework to deal with transport and evolution of path-based uncertainty in
general stochastic flows. Bounds on uncertainty of path-based functoinals (e.g., Lyapunov exponents) are derived in
terms of the generators of the stochastic dynamics which provides a connection between the Eulerian (field-based)
and Lagrangian (trajectory-based) viewpoints, and allows for further analytical treatment.
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The approach is based on utilising certain class of divergencies, Dα(µ‖ν) > 0, which provide a notion of a pseudo-
distance between measures µ and ν on manifolds of probability measures on a measurable space (Ω,F ,P) and the
stochastic flow Ptt0(·, ω) onM s.t. Pts ◦ Pst0 = Ptt0 a.s. for each t0 ≤ s ≤ t. We subsequently introduce the notion of
a finite-time divergence rate (FTDR) field, Dt

α(µ‖ν) > 0, t > 0, which captures nonlinear stretching directly from the
growth of cross-entropy under the stochastic flow. The FTDR framework elucidates the connection between the evolution
of probability measures and the average local stretching; in particular, this allows for a rigorous definition of finite-time
nonlinear expansion rates based on the Lyapunov exponents for probability measures, owing to the multiplicative ergodic
theorem. We then show that under fairly general conditions the FTDR field exists and provides a well-defined notion of
stretching which is a continuous on the phase manifoldM. Moreover, under some weak conditions on the differentiability
of the flow, we prove the existence of FTDR in the limit when the measure of the support of the initial density tends to zero.
In the deterministic setting these results allow for derivation of rigorous bounds on the FTLE in terms of the probabilistic
finite-time divergence rates in the general form∣∣Eµt [Λtt0 ]

∣∣ ≤ At

(
Dt
α (µt‖µ0)

)
, At ≥ 0, µt � µ0,

where Λtt0(x0) is the largest finite-time Lyapunov exponent and µ0 is the measure on the initial conditions x0 ∈M, and
µt = (Ptt0)∗µ0 with the family of Markov evolutions {(Ptt0)∗}t0,t∈I given by the dual of Ptt0 . Conversely, the finite-time
divergence rates are shown to be bounded by certain minimal FTLE fields.
Reduced order modelling of complex systems characterised by a wide range of spatio-temporal scales is unavoidably
affected by incomplete information about the true state which enters the problem as a dynamical model error or a para-
metric uncertainty. The evolution of both types of uncertainty relative to the initial measure µ0 can be captured in terms
of the evolution of the appropriate divergence. For path-based functionals the uncertainty bounds can be derived either in
terms of a measure-valued process on the phase manifoldM or based on the measure on the (infinite-dimensional) path
space associated with the stochastic flow. We derive such uncertainty bounds in the two aforementioned cases for Markov
processes (specifically, Îto diffusions) in terms of information-theoretic measures on a finite time interval. Consequently,
this framework avoids the use of asymptotic notions (e.g., flow-invariant measures) and the bounds are not restricted to
long-time regimes. However, extra care is needed in the infinite-dimensional setting when dealing with path-space mea-
sures; the problem simplifies and regularises in finite-dimensional approximations of the dynamics on a finite subset of
times in the evolution. Similar to the Pinsker inequality, the bounds are of the general form (details to be published)

d
(
Eµ[f ],Eν [f ]

)
≤ B

(
f,Eµ[f ],Eν [f ]

)
C
(
Dα (µ‖ν)

)
, B,C > 0, µ� ν,

where d is some metric, the measure µ is absolutely continuous w.r.t the measure ν, and the bound factorises into a product
of a term that depends on the dynamics and a term involving the expectation of the functional under the measure associated
with the dynamics. Such bounds connect sensitivity analysis based on stochastic gradient-descent with information-
theoretic methods, and they are derived from appropriate variational formulations of information measures in a similar
spirit to those in [5] or more recently in [6]. However, in the present work more general information measures are
employed and the explicit connection to the generator of the underlying stochastic process is utilised (cf. (III) above),
making the results amenable to further analysis. Moreover, this approach provides computational advantages when dealing
with high-dimensional stochastic systems or models with a high-dimensional parameter space when the gradient-type
methods for computing sensitivity to perturbations become formidably costly. Finally, in order to illustrate the relationship
between the FTLE and FTDR fields, and the uncertainty bounds, we develop a simple numerical method for estimating
the FTDR field; more sophisticated, adaptive methods focusing on high-value FTDR regions are under development for
practical applications. A follow-up work based on this abstract framework involves uncertainty quantification and optimal
path-space tuning of reduced-order Lagrangian predictions of multi-scale stochastic dynamical systems.

References
[1] Branicki M., Wiggins S. (2010) Finite-time Lagrangian transport analysis: stable and unstable manifolds of hyperbolic trajectories and finite-time

Lyapunov exponents, Nonlin. Processes Geophys. 17, 1–36.
[2] Brown G.L., Roshko A. (1974) Density effect and large structure in turbulent mixing layers, J. Fluid Mech., 64, 775–816.
[3] Dellnitz M., Junge O. (1999) On the approximation of complicated dynamical behaviour, SIAM J. Numer. Anal. 36(2), 491–515.
[4] Deuflhard P., Huisinga W., Fischer A., Schütte C. (2000) Identification of almost invariant aggregates in nearly uncoupled Markov chains, Linear

Algebra Appl. 315, 39–59.
[5] Donsker M.D., Varadhan S.R.S (1975) Asymptotic evaluation of certain Markov process expectation for large time, Comm. Pure Appl. Math, 1-47.
[6] Dupuis P., Katsoulakis M. A., Pantazis Y., Plechác P. (2016) Path-Space Information Bounds for Uncertainty Quantification and Sensitivity Analysis

of Stochastic Dynamics, SIAM J. Uncertainty Quant. 4, 80-111.
[7] Froyland G., Padberg K. (2009) Almost-invariant sets and invariant manifolds – connecting probabilistic and geometric descriptions of coherent

structures in flows, Physica D 238, 1507–1523.
[8] Froyland G., Padberg-Gehle K. (2012) Finite-time entropy: A probabilistic approach for measuring nonlinear stretching, Physica D 241, 1612–1628.
[9] Haller G. (2000) Finding finite-time invariant manifolds in two-dimensional velocity fields, Chaos 10, 99–108.

[10] Haller G. (2001) Distinguished material surfaces and coherent structures in three-dimensional fluid flows, Physica D 149 248–277.
[11] Ottino J. (1989) The Kinematics of Mixing: Stretching, Chaos, and Transport, Cambridge University Press, Cambridge.
[12] Rom-Kedar V., Wiggins S., (1990) Transport in two-dimensional maps, Arch. Ration. Mech. Anal. 109, 239–298.
[13] Wiggins S., (1992) Chaotic Transport in Dynamical Systems, Springer.


