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Summary. The dynamics of a multibody system with contacts and friction can be formulated as a linear complementarity problem
(LCP) via the discretization of the friction cone. Several discrete friction models are available in the literature, and all of them produce
rank-deficient LCPs due to the use of multiple directions to discretize the tangent plane. In this work, a new discrete friction model is
proposed which couples the equations in these directions and allows the dynamic formulation to take the form of a full-rank LCP.

Abstract

The dynamics of multibody systems with contacts presents some well-known challenges, especially when it involves
frictional contacts. If friction is neglected, the representation takes the form of a linear complementarity problem (LCP),
for which the existance of solution is guaranteed, and several direct or iterative solution algorithms are available in the
literature. However, considering friction in contacts using the Coulomb model turns the formulation into a nonlinear
complementarity problem (NCP), for which the existence of solution is not guaranteed.

Several friction models have been proposed to approximate the Coulomb model so that the model can take the form of an
LCP [1, 2, 3]. These models are based on the discretization of the friction cone, which turns the non-linear inequalities
of the original model into linear ones by choosing a finite number of directions in the tangent plane. As a result, this
discretized model approximates the friction cone with a pyramid. It is worth mentioning that this issue is only related to
the contact points that are not sliding, because the static friction force is confined to the friction cone; whereas the kinetic
friction force is defined by a constitutive relation.

Generally, there are two ways to discretize the Coulomb friction model. One approach is based on a discrete force, in
which the directions are used to define non-negative components of the friction force A =Y 8;e;, being e; the unit vectors
associated with each direction of the tangent plane [2, 3]. The second approach is based on a discrete acceleration, in
which the directions are used to define non-negative components of the pre-sliding tangential acceleration u; = ) k;je; [1].
The size of the problem to solve is very similar in both cases, and they can behave the same for certain sets of chosen
directions.

A common characteristic of these models in multibody system formulations is that the lead matrix of the LCP is rank
deficient, even though there is no redundancy in the contact forces of the system. This is due to the use of more than two
non-idependent directions in the tangent plane, and so it is an artifact of the model. Nevertheless, it is possible to define a
full-rank LCP formulation using the discretized friction model proposed here.

Let us define k different directions in the tangent plane, so that the relative tangent acceleration can be discretized and
parameterized as follows

k
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where e; are the unit vectors of these directions, and k;j; > 0 and k;_ > 0 are the positive acceleration parameters pointing
to the positive and negative directions of e, respectively. On the other hand, two friction saturations are defined in each
direction to enforce the limits of the friction force in the positive and negative directions

Ojs = Ay — €] A+ pKjy >0 2)
Oj = thnt+€j A+ pKj- >0 3)

where (1 is the static friction coefficient, A, is the normal force, and p is the phantom inertia. The friction saturations &
need to be complementary to the parameters k, so that sliding only starts when the friction force reaches the bounds at the
opposite direction. This is enforced via the complementarity conditions ¢ k;— =0 and 0;_kj+ = 0.

The novelty of this model is the addition of the phantom inertia p into the equations, which does not change the dynamics
of the contact model, but it adds some extra information into the equations. This makes the lead matrix of the LCP full
rank, in spite of using a discrete friction model. The complementarity conditions make sure that force and acceleration
will never point to the same direction, that is, adding that term does not change this. It can be shown that a solution where
both parameters k4 and k;_ are positive is not possible, no matter how big p is. When the friction force reaches a bound,
only the acceleration pointing to the opposite direction will be positive; and when the friction force is within the bounds
of that direction, i.e., \e]T)\t| < WAy, the two parameters Kj+ = kj— = 0. The inertia p only makes the friction saturation of
one bound larger, in case the sliding starts in the oposite direction, and thus it does not influence the stick-slip transition,
see Figure 1.

This model can be introduced in a formulation for multibody systems, where the dynamic representation takes the form
of an LCP. Let q be the minimal set of n generalized coordinates of a multibody system, so that any bilateral constraint is
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Figure 1: Discretized friction model, and model variables for the j-th direction. Static friction (left), and stick-slip transition (right).

embedded. A minimal set of n generalized velocities v is chosen, such that ¢ = I'v, where I'(q,?) is the transformation
matrix. With this representation, the dynamic equations can be written as

Myv+c=f+f+f, (€]

where M(q) is the n X n mass matrix, ¢(q,v) is the n x 1 array containing the Coriolis and centrifugal terms, f, is the
generalized applied force, and f; and f;, are the generalized tangential and normal contact forces, respectively.

The gap functions that define the distance between the r contacting surface pairs are arranged into the array ®(q) > 0.
Therefore, the normal acceleration is ® = u, = J, v+ J,v > 0, where Ju(q) is the r x n contact Jacobian matrix. Therefore,
the generalized normal contact forces are f, = JE)\D, where the r normal contact forces are

An >0 complementary to 1w, >0 (®)]

The tangent plane of each contact point is characterized by two orthogonal directions, in which the components of the
sliding acceleration can be expressed as W, = Jv+ J;v, where J;(q) is the 27 x n friction Jacobian matrix. The generalized
friction force is then f; = JtT)\t, where A contains the 2r friction contact force components. The discrete friction model
requires a set of directions in the tangent plane, so that the components of their k; unit vectors of the i-th contact point can
be arranged as columns of the matrix E; = [el RN % ], and therefore, u;, = E;k;y — E;x;_. Equations (1), (2) and (3)
can be arranged in a matrix form for each contact, so that the 2 arrays of k; friction saturations are

Oir = phn, —E] A, + pikiy >0 complementary to ;>0 (6)
oi- = phy, —&—EiT)\tl. +p;ki— 20 complementaryto Ky >0 @)
where p; = [ 1; --- p: |7, and p; = diag (p;, ..., p;). Then, the system dynamic equations can be writen as
M JI -JI o0 o] v c—f, 0
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where E = diag (E, ..., E,), p = diag (i, ..., ,), and p = diag(py, ..., p,). The variables v and A;, which do not
have any complementarity condition, can be eliminated from the system via the Schur complement, so that an LCP with
the variables A\, x4 and x_, and the complementarity conditions in Eqn. (5), (6) and (7) can be formulated.

The role of the square diagonal phantom inertia matrix p is clearly shown in equation (8). Due to the use of dependent
directions to discretize the friction cone, the two last block columns of the lead matrix would be linearly dependent.
However, the discrete friction model proposed here gives rise to a full-rank LCP formulation, by coupling the friction
saturations without changing the dynamics of the system. If the contact forces are not redundant, the contact normal
and friction Jacobian matrices are full-rank, and so is the lead matrix. Nevertheless, if the system presents redundancy,
some physics-based techniques (e.g., constraint relaxation, minimum-norm solution, etc.) would be required to solve the
dynamic equations and determine the contact forces.
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