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Frictional passive damping in a beam on foundation under moving loads
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Summary. The presentation addresses the dynamic behaviour of frictionally damped Euler-Bernoulli beams on Winkler foundations
submitted to a concentrated uniformly moving load. Frictional damping devices are considered to link certain cross sections of the
beam to motionless points. A method designed to deal with systems having nonsmooth constitutive laws is used to find numerical
solutions [1].

Introduction

The safety of railway vehicles depend in a high degree on the ability to dampen rail amplitudes upon the passage of loads.
The purpose of the present study is to quantify how much frictional dissipation (i) affects moving load’s critical velocity
and (ii) is able to limit dynamic displacements. These are two important aspects, especially for high speed trains that may
induce excessive vibrations [2] able to endanger the safety of passengers or at least to make maintenance operations very
frequent and expensive. One form of limiting dynamic amplitudes is by means of frictional damping which has some
ecological and economic advantages [3] with respect to the more classic viscous damping.

The physical and numerical models

The physical model consist of a Euler-Bernoulli beam of length L, mass per unit length p, cross section area A and moment
of inertia I, simply supported at both extremities and continuously supported along the span by a Winkler foundation of
stiffness per unit length k (Figure 1). The beam (actually a UIC60 rail) is also attached to the immovable part of the
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Figure 1: An Euler-Bernoulli beam on a Winkler viscoelastic foundation in parallel with a system of frictional damping devices of the
Coulomb type.

foundation by nq frictional dampers obeying to Coulomb’s law, each one with a maximum friction force of F,,, located
at abcissas ;. A transverse concentrated load F' moves along the beam’s axis uniformly with velocity v. The motion is
governed by a partial differential inclusion
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where w(x,t) denotes the transverse displacement at abcissa x in instant ¢, ~ and ' denote first order derivatives with
respect to ¢ and to x, §(x — x;) denotes the Dirac’s function centered at abcissa z; and the multiapplication Sign(z) is
equal to (a) —1 for z < 0, (b) [-1,+1] for z = 0, (c) +1 for z > 0.

The spacial discretization of (1) by the finite element method leads to the ordinary differential inclusion
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in which g groups the set of generalized coordinates that are not subjected to any kinematic constraint, M and K are
the mass and stiffness matrices, P and FWT(vt) are the vectors of generalized forces that are statically equivalent to
the beam’s self weight and to the concentrated moving load and R is the velocity dependent vector of generalized forces
statically equivalent to the action of the frictional dampers on the beam.

Numerical approximations to (1) are obtained by applying to (2) a simplified version (for persistent contact with friction)
of the nonsmooth contact dynamics method (NSCD) developed by J.J. Moreau [1]. This method is based on the impulsive
version of (2).
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Numerical results

We consider a concentrated force F' = —83.4 kN traveling on a 200 m UIC60 rail discretized in 256 finite elements.
The maximum upward and downward displacements occurring during the time interval [0, %] of the load passage are
registered in Figure 2 for velocities ranging between 50 m/s and 300 m/s and for a relatively soft foundation (k = 250
kN/m?). Four values of maximum frictional force in each damping device were considered: F,, = 0, 10, 50 and 100
kN. Figure 2(a) corresponds to a damping design with a damper at each 50 m while Figure 2(b) corresponds to a design
with a damper at each 12.5 m. Such as for beams on viscoelastic foundations, for friction damped beams we identify as
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Figure 2: Maximum transverse displacements of the beam as function of the velocity of the load for a foundation modulus £ = 250
kN/m? and two numbers of frictional dampers (nq = 3 and 15).

well a load velocity in the vicinity of which larger amplifications of the beam’s transverse displacements occur - the so
called critical velocity. We observe that for a fixed number of dampers the increase of the dampers’ maximal force leads
to (i) a decrease of the maximum displacements for velocities in the neighbourhood of the critical velocity, with more
intensity when there are more dampers (Figure2), (ii) for a small number of dampers, for subcritical and supercritical
load velocities the increase of the maximal force F;, does not contribute to the limitation of the maximal displacements
and sometimes (v between 160 and 200 m/s and v > 240 m/s) leads to their increase (Figure 2(a)) and (iii) when there
is a large number of friction dampers, for supercritical velocities an increase of F), leads to a decrease of the maximal
displacements as for near critical velocities while for subcritical velocities the range of velocities for which an increase of
F,, leads to an increase of maximal displacements gets larger (Figure2(b) for v between around 120 m/s and 190 m/s).
Figure 3 illustrates the dependence of the maximal displacements with respect to the maximum friction force in the
dampers (F,) in order to check if, for a given load velocity and a fixed number of damping devices, one may identify
an optimal value for the maximum frictional force F,,. We conclude that only for the critical velocity (and certainly
for near critical velocities too) it is possible to identify values of F), corresponding to the minimization of the maximal
displacements (Figure 3(b)); moreover, for a fixed F),, the decrease of the maximal displacement depends monotonically
on the number of devices.
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Figure 3: Maximum transverse displacements of the beam as function of the frictional force F3, for a foundation modulus £ = 250
kN/m?2, two load velocities and different quantities of frictional dampers (nq = 3, 7, 15 and 31).
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