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Summary. Nonlinear vibrations can produce imbalance of dynamic forces on the sun of symmetric planetary gearboxes, this is due to the 
symmetry breaking and results in strong vibrations of the sun supports. 
Changing the bearing stiffness can modify the natural frequencies and consequently the ratio between frequencies; when such ratios are 
rational numbers the nonlinear system can suffer of nonlinear modal interactions due to internal resonances and complex dynamics. One 
of the well known consequences of the onset of complex dynamics in symmetric dynamical systems is the symmetry breaking. 
It was proven in the past that chaos induced symmetry breaking in planetary gearboxes can generate undesirable loads on the sun 
supports, which are not predictable using the classical design tools. The present study shows that tooth profile modifications on sun and 
planet gears can positively affect the dynamic response of the system and minimize the possibility of failure caused by symmetry 
breaking and unexpected loads on sun bearings. 
 

Introduction 
Planetary or epicyclic gear trains are widely used in many automotive, aerospace and marine applications; they are 
effective power transmission systems when high torque to weight ratios, large speed reductions in compact volumes, 
co-axial shaft arrangements, high reliability and superior efficiency are required [1]. Gear vibrations are primary 
concerns in most planetary gear transmission applications, where the manifest problem may be noise or dynamic 
forces. The most important source of vibration in planetary gears is the parametric excitation due to the periodically 
time-varying mesh stiffness of each sun-planet and ring-planet gear, because the number of tooth pairs in contact 
changes during gear rotation. This mesh stiffness variation parametrically excites the planetary gear system, causing 
severe vibrations when a harmonic component approaches one of the natural frequencies (or their linear 
combinations). Under certain near resonant operating conditions, gear systems can experience a teeth separation that 
induces nonlinear effects such as jump phenomena and subharmonic and superharmonic resonances with dramatic 
effects on the dynamic response [2]. These phenomena have been deeply investigated in geared systems during the 
last 20 years [3-7]. 
This paper presents a dynamic model to simulate the dynamic behavior of a single-stage planetary gear system with 
time varying mesh stiffness and backlash. The complex dynamic scenario of a three-planets gearbox is investigated in 
detail. A bifurcation analysis is performed to explore the dynamic scenario (periodic, quasiperiodic and chaotic), with 
a special attention to symmetry breaking phenomena that are extremely interesting in planetary gears as they can 
cause additional imbalance-induced-stresses. Numerical analyses are carried out over meaningful mesh frequency 
ranges. The analysis is completed with time histories, spectra, phase portraits and Poincaré maps of the most 
interesting regimes. It was proven in the past that chaos induced symmetry breaking in symmetric planetary 
gearboxes can generate unexpected and undesirable loads on the sun supports, which are not predictable using the 
classical design tools. The present study shows that tooth profile modifications on sun and planet gears can positively 
affect the dynamic response of the system and minimize the possibility of failure caused by symmetry breaking and 
unexpected loads on sun bearings. 
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Fig. 1. Physical planar model of the single stage planetary gearbox 
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Dynamical Model 
The physical model of a single-stage planetary gear set is shown in Fig. 1. The system is made of four types of 
elements: sun gear; ring gear; N planets; carrier. Here the modeling is plane, i.e. each element has three degrees of 
freedom: two displacements and a rotation. The centers of the different elements of the system are free to move in the 
plane, each component has translational and rotational degrees of freedom. The total number of degrees of freedom is 
(3N + 9); the model includes time variation of gear mesh stiffness (depending on the reciprocal angular position of 
two meshing gears), backlash nonlinearities of mating gears and bearing compliance (no clearance is considered for 
bearings). The basic dynamical equilibrium equations contain (3N+9) nonlinear ordinary differential equations, where 
N is the number of planets; e.g. when N=3 they will be 18 coupled equations. The equations of motion of the model 
shown in Fig. 1 are written using Newton-Euler equations and they are placed in canonical form. 
For the sake of brevity only the Sun Gear equation of motion is reported here: 

    

−Ms × !!xs −Cs × !xs +
n=1

N

∑ csn !xn − !xs( )× sin2 ψ n −α s( )( )⎡
⎣ + −csn !yn − !ys( )× sin ψ n −α s( )× cos ψ n −α s( )( )

+ csn
!θs × rbs + !θn × rbn( )× sin ψ n −α s( )( )⎤⎦ − ks × xs +

n=1

N

∑ ksn fsx( )× sin2 ψ n −α s( )( )⎡
⎣ + −ksn fsy( )× sin ψ n −α s( )× cos ψ n −α s( )( ) + ksn fsθ( )× sin ψ n −α s( )( )⎤⎦ = 0

     1) 
the piecewise-linear displacement functions for sun-planets meshing, which are defined as follows: 
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Dynamical Model 
Results are obtained by direct numerical integration using an implicit Runge-Kutta scheme (RADAU). Figures 2 
represent the bifurcation diagram of the Poincaré maps, they correspond to the x and y translations of sun gear center. 
In linear field, the symmetry and the perfect balancing of the system implies that the sun is loaded with a self-
equilibrate force system from the planets, therefore it should experience no displacement in x and y directions. For the 
ranges where complex phenomena appear, the system presents symmetry breaking and consequently sun imbalance.  

(a) 

 

(b) 

  
Fig. 2. Bifurcation diagram vs. mesh frequency for case 2 (a) Sun center x-translation [µm], (b) Sun center y-
translation [µm] 

Conclusions 
This paper presents a dynamic model to simulate the dynamic behavior of a single-stage planetary gear system with 
time varying mesh stiffness and backlash. The bifurcation scenario shows a symmetry breaking phenomenon that can 
cause additional imbalance-induced-stresses. A compensation can be achieved using suitable profile modifications. 
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