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Analysis of the Forced Vibration of Geometrically Nonlinear Cantilever Beam with
Lumping Mass by Multiple-Scales Lindstedt-Poincaré Method
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Summary. The forced vibration of cantilever beam with or without lumping mass can be found in many practical applications. With
the variational approach based on extended Hamiltonian principle, the equation of motion and boundary conditions governing a uniform
cantilever beam carrying a lumping mass at the free end are formulated under the action of lateral tip concentrated load. After that,
the multiple-scales method, multiple-scales Lindstedt-Poincaré method and fourth-order Runge-Kutta method are employed to analyze
the forced vibration of the considered cantilever. It is found that the first mode frequency response curve obtained by the multiple-
scales Lindstedt-Poincaré method agree well with the first mode frequency response curve obtained by the fourth-order Runge-Kutta
method. However, the first mode frequency response curve obtained by multiple-scales method deviates from the first mode frequency
response curve obtained by the fourth-order Runge-Kutta method when the beam deflection is large. When the excitation frequency
is around second or third natural frequency, neither multiple-scales method nor multiple-scales Lindstedt-Poincaré method can give
correct frequency response curves comparing to the frequency response curves obtained by the fourth-order Runge-Kutta method.

Introduction

Perturbation theory consists of the methods for obtaining the approximate analytical solutions to nonlinea equations. For
instance, algebraic equations, differential equations, integrals equations and integro-differential equations governing some
physical systems can be approximately solved by perturbation methods. Some different perturbation methods such as
multiple-scales (MS) method, Lindstedt-Poincaré method, multiple-scales Lindstedt-Poincaré (MSLP) method, the meth-
ods of matched and composite asymptotic expansion, and averaging method have been developed and employed [1, 2]. A
small parameter must be introduced artificially to the equations when classic perturbation methods are employed. If the
systems to be solved are strongly nonlinear, obtaining the approximate solutions to the problems becomes a challenge. The
recent new theoretical results on the free and forced vibrations of some strongly nonlinear equations and oscillators are of
great interest to the engineering community since their applications can be found in many areas. The new techniques can
be summarized as 1) variational iteration method; 2) linearized perturbation method; 3) parameter expansion perturbation
method; and 4) various modified Lindstedt-Poincaré methods. Each of these methods can be applied for obtaining the
approximate solutions of a wide class of nonlinear systems without small perturbation parameter. Hu applied an iteration
procedure for the solution of a quadratic nonlinear oscillator (QNO) and the obtained solution is improved in comparison
with that obtained by the first-order harmonic balance method [4]. Marinca and Herisanu extended the iteration method
and the obtained solution agrees well with exact solution [5]. Hu modified the equivalent linearization method for ana-
lyzing the nonlinear single-degree-of-freedom (SDOF) systems with odd nonlinearity [6]. A modified expansion method
proposed by He achieved a high accuracy even when the perturbation parameter is within 0≤ ε < ∞ [7]. Xu applied He’s
parameter-expanding method (PEM) to determine the limit cycles of some strongly nonlinear oscillators [8]. Comparing
with the exact solution, PEM shows its effectiveness and accuracy for some nonlinear physical problems [9]. Cheung et
al. introduced a new expanding parameter to Lindstedt-Poincaré method by which A strongly nonlinear system with large
perturbation parameter is transformed into a system with small parameter [10]. A modified Lindstedt-Poincaré method
was first proposed and the solution to a Duffing equation was obtained by Hu [11]. Hu and Xiong applied the modified
Lindstedt-Poincaré method to a Duffing equation and compared the results with those from classical Lindstedt-Poincaré
method [12]. They showed that the Lindstedt-Poincaré method is invalid when the perturbation parameter is large. The
first-order and second order analytical approximate solutions with the modified Lindstedt-Poincaré method are formulated
for a two-degree-of-freedom (TDOF) mass-spring system carrying quadratic nonlinearity by Lim et al [13]. An accurate
result was achieved by them. In 2009, Pakdemirli proposed a method named multiple-scales Lindstedt-Poincaré method
by combining multiple-scales method and Lindstedt-Poincaré method. This method has been applied to three oscilla-
tors, i.e., damped linear oscillator, Duffing oscillator, and damped Duffing oscillator. The results obtained by the MSLP
method were compared with those from conventional MS method and numerical method. It is shown that the results from
the MSLP method agree well with numerical simulation for some weakly and strongly nonlinear systems. Meanwhile,
the results of conventional MS method deviate a lot from numerical simulation as the system nonlinearity increases [2].
Moreover, the MSLP method was applied to a damped duffing oscillator, a quintic duffing oscillator with strong nonlin-
earity and a quadratic nonlinear oscillator by Pakdemirli [14, 15, 16]. In this paper, the MS method, MSLP method and
fourth-order Runge-Kutta method are employed to analyze the forced motion of the cantilever beam with lumping mass.
The responses obtained by these methods are compared and the effectiveness of the MS and MSLP methods is examined
by the results of numerical simulation.
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Vibrational analysis of the cantilever with large deformation
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Figure 1: The scheme of the cantilever beam energy harvester with lumped mass on the free end.

Cantilever beam is widely used in many areas such as structural construction or energy harvester due to it can undertake
strong forces and it can remain elastic even undergo a large deflection. However, only MS method has been adopted to
analyzed the cantilever beams in the past [20, 21]. We consider the vibration of a cantilever with lumped tip mass and
large deformation. An example is the energy harvester designed to be a cantilever with tip lumped mass as shown in
Fig. 1. The cantilever is assumed to be an isotropic and inextensible Euler-Bernoulli beam. For flexible cantilevers, the
large deformation can lead to obvious nonlinear behaviors. The MS method, with a small artificial parameter assumption,
may be invalid in this case. In order to check the validity of each mentioned methods, the MS method, MSLP method
and fourth-order Runge-Kutta method are applied to study the response of the cantilever undergoing planar motion. The
analytical solutions obtained with the MS and MSLP methods are compared to the numerical solutions to figure out the
effectiveness and accuracy of the MS and MSLP methods in various cases. The equation of motion of the cantilever with
a lumped mass and tip harmonic excitation is given in the following [22].

mÿ+Mtδ (s−L)ÿ(L, t)+ cyẏ+EIyiv = FA cos
(
Ωt
)
δ (s−L)−EI

[
y′(y′y′′)′

]′
− 1

2

{
y′
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L

[∫ s

0
y′2ds

]··
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}′

+mg[(s−L)y′′+ y′]+mg
[
(s−L)

3y′2y′′

2
+

y′3

2

] (1)

The boundary conditions are
y(0, t) = 0,y′(0, t) = 0,y′′(L, t) = 0,y′′′(L, t) = 0 (2)

where Mt is the lumped mass on the tip, m is the beam mass per unit length, L is the beam length, E is Young’s modulus,
I is the moment inertia of beam cross section, g is the ground acceleration, s is the arclength, t is time, y(s, t) is the
transverse displacement, cv is the coefficient of linear viscous damping per unit length, FA is the forcing amplitude and
Ω is the excitation frequency. The prime denotes the differentiation with respect to the arclength s. When the external
excitation is nearby the ith natural frequency, the response is dominated by the ith mode. In this case, the approximate
transverse displacement y(s, t) of the beam is given by

y(s, t) = Φi(s)qi(t) (3)

where qi(t) is the generalized coordinates corresponding to the ith mode, and Φi(s) is the ith linear mode function of the
cantilever, which is expressed as

Φi(s) = cos(pis)− cosh(pis)−
cos(piL)+ cosh(piL)
sin(piL)+ sinh(piL)

[
sin(pis)+ sinh(pis)

]
(4)

With Galerkin’s method and y(s, t) = Φi(s)qi(t), the following system can be formulated.

(1+αε)q̈i +2uε
2q̇i +ω

2
0 qi +βεq3

i +αεqiq̇i
2 = Fε

2 cos(Ωt) (i = 1,2,3) (5)



ENOC 2017, June 25-30, 2017, Budapest, Hungary

where ε is perturbation parameter and

uε
2 = ω0ξ , (6)

ω
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m0
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m0 = MtΦ
2
i (L)+m

∫ L

0
Φ

2
i ds. (11)

Eq. (5) is treated by the MS method and the MSLP method in the following, respectively.

Multiple-scales method
With MS method, the oscillator response is expressed as

q = q0(T0,T1,T2)+ εq1(T0,T1,T2)+ ε
2q2(T0,T1,T2)+O(ε3) (12)

where T0, T1 and T2 are the fast and slow time scales which are given by

T0 = t, T1 = εt, T2 = ε
2t. (13)

By chain rule, the operators of time derivatives are

d
dt

= D0 + εD1 + ε
2D2 + . . . , (14)

d2

dt2 = D2
0 +2εD0D1 + ε

2(D2
1 +2D0D2)+ . . . , (15)

where Dn = ∂/∂Tn and D2
n = ∂ 2/∂T 2

n . Substituting Eqs. (12), (14) and (15) into Eq. (5) and setting the coefficients of εm

(m = 0,1,2) to zero lead to the following equations.

O(ε0) : D2
0(q0)+ω

2
0 q0 = 0, (16)

O(ε1) : D2
0(q1)+ω

2
0 q1 =−2D0D1(q0)−βq3

0−αq0[D0(q0)]
2−αq2

0D2
0(q0), (17)

O(ε2) : D2
0(q2)+ω

2
0 q2 =−2D0D1(q1)−D2

1(q0)−2D0D2(q0)−2uD0(q0)

−3βq2
0q1−αq1[D0(q0)]

2−2αq0D0(q0)D0(q1)−2αq0D0(q0)D1(q0)

−αq2
0D2

0(q1)−2αq2
0D0D1(q0)−2αq0q1D2

0(q0)+F cos(Ωt).

(18)

The solution to the O(ε0) equation is
q0 = Aeiω0T0 + Āe−iω0T0 (19)

where A is a function of time scales T1 and T2 which can be determined by omitting the secular terms in the higher-order
equation.
Substituting Eq. (19) into the righthand side of the O(ε1) equation and eliminating the secular terms yield

2iω0D1(A)+3βA2Ā−2αω
2
0 A2Ā = 0. (20)

Then the solution of the O(ε1) equation can be obtained to be

q1 = Λe3iω0T0 + Λ̄e−3iω0T0 (21)

where

Λ =
βA3

8ω2
0
− αA3

4
. (22)

Substituting the expressions of q0 and q1 into the O(ε2) equation along with the assumption of Ω = ω0 + ε2σ and
eliminating the secular terms yield

D2(A) =
FeiσT2

4iω0
−uA− 9α2ω0A3Ā2

4i
+

9αβA3Ā2

4iω0
+

15β 2A3Ā2

16iω3
0

(23)
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Then the solution to the O(ε2) equation can be obtained to be

q2 = Γ1e3iω0T0 +Γ2e5iω0T0 + Γ̄1e−3iω0T0 + Γ̄2e−5iω0T0 , (24)

where

Γ1 =
9α2A4Ā

16
− αβA4Ā

8ω2
0
− 21β 2A4Ā

64ω4
0

, (25)

Γ2 =
3α2A5

16
− αβA5

8ω2
0

+
β 2A5

64ω4
0
. (26)

Express the time derivative of A as
dA
dt

= εD1(A)+ ε
2D2(A)+O(ε3) (27)

and a polar form of A is assumed to be

A =
1
2

aeib. (28)

Substituting Eqs. (20), (23) and (28) into Eq. (27) and setting the real and imaginary parts equal zero, respectively, yield

ȧ =
f ε2

2ω0
sinγ−uaε

2 (29)

and

γ̇ = Ω−ω0 + ε

(
a2αω0

4
− 3a2β

8ω0

)
+ ε

2
(

F cosγ

2aω0
− 9a4α2ω0

64
+

9a4αβ

64ω0
+

15a4β 2

256ω3
0

)
. (30)

In steady state, ȧ and γ̇ equal to zeros. The frequency response curve can be obtained by eliminating γ and σ in Eq. (30)
and Ω = ω0 + ε2σ . The relation between the excitation frequency and steady-state response can be obtained to be

Ω =ω0 + ε

(
− a2αω0

4
+

3a2β

8ω0

)
+ ε

2
(
∓ F

2aω0

√
1−

4ω2
0 u2a2

F2 +
9a4α2ω0

64

− 9a4αβ

64ω0
− 15a4β 2

256ω3
0

)
.

(31)

The approximate response of the oscillator is finally obtained to be

q = a{cos(Ωt− γ)+X1 cos[3(Ωt− γ)]+X2 cos[5(Ωt− γ)]}, (32)

in which

X1 = a2
ε

(
9a2α2ε

256
− α

16
− 21a2β 2ε

1024ω4
0
+

β

32ω2
0
− a2αβε

128ω2
0

)
(33)

and

X2 = a4
ε

2
(

3α2

256
+

β 2

1024ω4
0
− αβ

128ω2
0

)
. (34)

Multiple-scales Lindstedt-Poincaré method
The forced vibration of the same oscillator is analyzed with MSLP method in the following. With the MSLP method, a
dimensionless parameter τ for the time transformation τ = ωt is introduced to oscillator (5) first, which leads to

ω
2y′′+2uωε

2y′+ω
2
0 y+αεω

2y′2y+αεω
2y2y′′+βεy3 = Fε

2 cos
(

Ω

ω
t
)
, (35)

in which y(τ) = q(ωt) and the prime stands for derivative with respect to the new time variable τ . The fast and slow time
scales with respect to τ are

T0 = τ, T1 = ετ, T2 = ε
2
τ. (36)

By chain rule, the operators of time derivatives are given by

d
dτ

= D0 + εD1 + ε
2D2 + . . . , (37)

d2

dτ2 = D2
0 +2εD0D1 + ε

2D2
1 +2ε

2D0 +D2 + . . . , (38)
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where Dn = ∂/∂Tn and D2
n = ∂ 2/∂T 2

n . The approximate solution is assumed to be

y = y0(T0,T1,T2)+ εy1(T0,T1,T2)+ ε
2y2(T0,T1,T2)+O(ε3). (39)

The following expression is used in the following analysis [2]

ω
2
0 = ω

2− εω1− ε
2
ω2. (40)

Substituting Eqs. (37)-(40) into Eq. (35) and equating coefficients of εm, (m = 0,1,2, to zero lead to the following
equations.

O(ε0) : ω
2D2

0(y0)+ω
2y0 = 0 (41)

O(ε1) : ω
2D2

0(y1)+ω
2y1 =−2ω

2D0D1(y0)+ω1y0−βy3
0−αω

2y0[D0(y0)]
2

−αω
2y2

0D2
0(y0)

(42)

O(ε2) : ω
2D2

0(y2)+ω
2y2 =−2ω

2D0D1(y1)−ω
2D2

1(y0)−2ω
2D0D2(y0)

−2uωD0(y0)+ω2y0 +ω1y1−αω
2y1[D0(y0)]

2−αω
2y2

0D2
0(y1)

−2αω
2y0D0(y0)D0(y1)−2αy0ω

2D0(y0)D1(y0)−2αω
2y2

0D0D1(y0)

−2αy0y1ω
2D2

0(y0)−3βy0
2y1 +F cos

(
Ω

ω
τ

) (43)

The solution to the O(ε0) equation is obtained as

y0 = A(T1,T2)eiT0 + Ā(T1,T2)e−iT0 . (44)

Eq. (44) is substituted into the righthand side the O(ε1) equation and the secular term is eliminated by

−2ω
2iD1(A)+ω1A+2αω

2A2Ā−3βA2Ā = 0. (45)

It is assumed that D1(A) = 0 since ω1 is real [2]. The frequency parameter ω1 is then expressed as

ω1 = 3βAĀ−2αω
2AĀ. (46)

With the secular term eliminated, the solution to the O(ε1) equation can be obtained as

y1 = Λe3iT0 + Λ̄e−3iT0 , (47)

where Λ is given by

Λ =
βA3

8ω2 −
αA3

4
(48)

For the solution to the O(ε2) equation, the excitation frequency is related to the transformed frequency by

Ω = ω(1+ ε
2
σ). (49)

Substituting Eqs. (44), (47) and (49) into the righthand side of the O(ε2) equation and eliminating the secular term, it
gives

Aω2−D2
1(A)ω

2−2iD2(A)ω2−4iαAω
2ĀD1(A)

− 3A3α2Ā2ω2

2
− 3A3Ā2β 2

8ω2 −2iuωA+
3A3αĀ2β

2
+

F
2

eiσT2 = 0.
(50)

D2(A) may not equal zero since ω2 would be complex. Therefore the possible choice is ω2 = 0. Substituting A = 1
2 aeib

into Eq. (50) along with γ = σT2−b and setting the real and imaginary parts equal zero, respectively, yield

D2(a) =
F

2ω2 sinγ− ua
ω

(51)

and

D2(γ) = σ − 3α2a4

64
+

3αβa4

64ω2 −
3β 2a4

256ω4 +
F

2aω2 cos(γ). (52)

The solution to the O(ε2) equation is given as

y2 = Γ1e3iT0 +Γ2e5iT0 +Γ1e−3iT0 +Γ2e−5iT0 , (53)
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where

Γ1 = A3
(

αω1

32ω2 −
αβAĀ
2ω2 −

βω1

64ω4 +
3βAĀ
32ω4 +

5α2AĀ
8

)
(54)

and

Γ2 = A5
(

3α2

16
− αβ

8ω2 +
β 2

64ω4

)
. (55)

In steady-state, D2(a) = 0 and D2(γ) = 0, which can make γ eliminated in Eqs. (51) and (52). Then the following
expression of Ω about the frequency response curve can be obtained with Eq. (49).

Ω = ω

[
1+ ε

2
(

3α2a4

64
− 3αβa4

64ω2 +
3β 2a4

256ω4 ∓
F

2aω2

√
1− 4u2ω2a2

F2

)]
(56)

where ω =

√
4ω2

0+3εβa2

4+2εαa2 . The approximate response of the oscillator is finally obtained to be

y = a
{

cos
(

Ω

ω
t− γ

)
+X ′1 cos

[
3
(

Ω

ω
t− γ

)]
+X ′2 cos

[
5
(

Ω

ω
t− γ

)]}
(57)

where

X ′1 = a2
ε

(
β

32ω2 −
α

16
+

αω1ε

128ω2 −
βω1ε

256ω4 −
a2αβε

32ω2 +
3a2β 2ε

512ω4 +
5a2α2ε

128

)
(58)

and

X ′2 = a4
ε

2
(

3α2

256
− αβ

128ω2 +
β 2

1024ω4

)
. (59)

Comparison analysis

Eq. (5) is analyzed in the following by MS method, MSLP method and fourth-order Runge-Kutta method, respectively, to
examine the effectiveness of MS and MSLP methods in different cases. The parameter values of a piezoelectric vibration
energy harvester being a vertical cantilever with tip mass are taken from [23]. They are listed in Table 1. Corresponding

Table 1: Parameters of the cantilever energy harvester

Symbol Meaning Value

L Length 300 mm
E Young’s modulus 210 Gpa
b Width of cross section 16 mm
h Height of cross section 0.254 mm
ξ damping ratio 0.02
I Moment of inertia bh3/12
ρ Material density 7850 kg/m3

m Mass per unit length ρA
pi Characteristic value of beam 1.8751/L, 4.694/L or 7.855/L
ω0 Natural frequency p2

i

√
EI/m

µ Tip and self mass ratio Mt/mL 0.5

to each mode, the frequency response curves obtained by MS method, MSLP method and Runge-Kutta method are shown
in Fig. 2. In the case of i = 1, the nonlinearity of restoring force dominates system nonlinearity when the excitation
frequency is around the first natural frequency. In this case, the solution obtained by MSLP method agree well with the
numerical solution while the results obtained by MS method deviate a lot from numerical simulation when the response
amplitude is large as shown in Fig. 2(a). However, In the case of i = 2 or 3, the nonlinearity of inertial force dominates the
system nonlinearity when the excitation frequency is around the second or third natural frequency. In this case, neither MS
method nor MSLP method can give acceptable results in comparison to the results from numerical simulation as shown
in Figs. 2(b) and 2(c).

Conclusions

The responses of the forced vibration of the cantilever beam with lumping mass are investigated with MS method, MSLP
method and numerical simulation, respectively, to examine the effectiveness of the MS method and MSLP method in
various cases. The single mode frequency response curves of the cantilever obtained by MS method, MSLP method and
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(a) Comparison of the first mode FRCs obtained by MS method, MSLP method and numerical simulation with
parameters being ω0 = 7.4853rad/s and FA = 0.004N.
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(b) Comparison of the second mode FRCs obtained by MS method, MSLP method and numerical simulation with
parameters being ω0 = 52.7202rad/s and F = 0.2N.
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(c) Comparison of the third mode FRCs obtained by MS method, MSLP method and numerical simulation with
forcing parameters being ω0 = 149.1810rad/s and F = 0.4N.

Figure 2: Comparison of the first three mode frequency response curves obtained by MS method, MSLP method and numerical
simulations of a vertical cantilever beam energy harvester.
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numerical simulation, respectively, are presented and compared to show the effectiveness of the MS method and MSLP
method with different excitation frequencies. Generally speaking, for the forced vibrations of cantilever beams, nonlinear
restoring force dominate the response of the beam when the excitation frequency is around first natural frequency. In the
contrary, when the excitation frequency is around second, third or higher natural frequency, the nonlinear inertial force
dominate the response of beam. Same phenomenon can be found that the first mode frequency response curve obtained
by the multiple-scales Lindstedt-Poincaré method agree well with the first mode frequency response curve obtained by
the numerical method. However, the first mode frequency response curve obtained by multiple-scales method deviates
from the first mode frequency response curve obtained by numerical method when the beam deflection is large. When
the excitation frequency is around second and third natural frequency, neither multiple-scales method nor multiple-scales
Lindstedt-Poincaré method can give correct frequency response curves comparing to the frequency response curves ob-
tained by the numerical method.
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