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The problem of the propagation time of a soundaigetween two given points A and B in stationary
gas flow is considered. It is shown that the gaw flrate modifies the time of the signal receptign

an amount proportional to the flow rate regardt#fsbie detailed speed profile. The time difference
receiving signals from point to point upstream dod/nstream with high accuracy proportional to the
air flow rate. It is shown that the relativeerrdtive formula does not exceed the maximum square o
the gas stream Mach number.

This allows to measure the gas flow rate in tlekimg with an arbitrary stationary subsonic vetgci
field.
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INTRODUCTION

The establishment of dispatching and automatitrobsystems for mines ventilation is impossible
without the availability of perfect air flow sensoExisting anemometers (tachometer, heat) do not
meet these requirements. The measurement ertioe average in the cross section velocity by such
sensors is about 15-20, sometimes reaching 30&rédson for this is that the velocity measured in
one point is interpreted as the average over th&scection.
The reliability of the sensors is small, becausy #re exposed to the damaging effect of very
aggressive atmosphere. Mounted on the roof sodcgil@nt” clutter cross section generation
anemometers, often are not possible to use. Mamynecial proposals for the acquisition of
flowmeters suitable for the flow measurement irtipalar for wide ducts, are possible to find in
Yandex'e typing "time-of-flight flow meters".
One of the authors of this article S. Z. Shkundimppsed a investigated different schemes (current,
time-pulse, phase methods) for measurement ohuwarmge flow rate parameters. Their principle of
operation is based on the fact that the propagétios of the acoustic oscillations through the air
stream depends on the velocity of the moving aimfthe radiator to the receiver. Recording the
changes in that time, one can determine the spegdhoving stream. Acoustic transducers are located
on opposite walls of the working not divertinga®ss section [1,2,3]. Due to the fact that theuatio
beam crosses the entire plot of the velocity distion in the flow, the acoustic anemometer measure
the average over its trajectory speed of the av flvith an error not exceeding 5% (in pre-
experimental estimates).

The evaluation of such flow rate measurementsivelarror for arbitrary velocity curve is given in
this article.
It should be noted that the study of the air flasloeity influence upon the phase velocity of the
acoustic wave is a complex mathematical problemmeSspecial cases of this problem solution were
studied earlier. The phase velocity of plane wanescircular pipe filled with a moving medium with



power law of velocity change along the radius eftilbe has been numerically investigated. The
solution of the wave equation carried out by theéhmoe of sampling in which the entire volume of the
pipe was divided into separate cylinders, in edahitoch the flow velocity was considered constant,
which allowed to reduce the wave task to the smiudf the Helmholtz equations in each cylinder[4]
The numerical results of the calculation of phasledities of flat quasi-homogeneous and
inhomogeneous waves in the pipe for various vekxcitf the moving media have been obtained and
analyzed. It is shown that the variation of thegeheelocity of a homogeneous plane wave in the pipe
associated with the movement of the medium is eguile average velocity ofthe flow for various ai
dynamics curves in the tube.

The increment of the phase velocity of a plane wagepipe with a moving acoustic medium relative
to the phase velocity of a homogeneous flat wavepipe with a stationary medium is approximately
equal to the average flow velocity in the pipe vitie difference of about a few percent. In [4]
analytically studied the acoustic waves in a cactiibe generated by a ring vibrator, placed in a
uniform subsonic flow codirectional with the axistloe waveguide. The method of Wiener-Hopf
solution in the form of expansion in series witrsBa functions have been used.

METHOD for MEASUREMENT OF GAS FLOW RATES IN MINE WRKING

The time-pulse method for theaverage in cross@editow velocity measurement is described in
monograph [1] and consists in the following. Thegm@ator supplying the transducers produces an
electrical signal. Both converters simultaneoushjtecoustic pulses towards each other and
immediately switch to reception. The speed of pgapian of the pulse downstream is equal to the sum
vector of the speed of sound in theairand the vigloector of the flow. The speed of pulse agathst
flowis equal to the difference of these vectords@siare applied to transducers operating in tteive
modenot simultaneously, and the interval betwéeir teceptions (which is the parameter to be
measured) is proportional to the flow rate. Theulep coming downstream switches on a time-
measuring circuit, and the pulse passing agaiestidlv, turning it off. The dependence of the
difference of time intervals of the acoustic sigmassage from point A to point B and back upon the
speed of the homogeneous air flow may be calculated

While measuring of air flow in the working vectdrtbe acoustic beam is a summand of a vector of
sound speed and the air flow rate vector. In tiesgmce of a homogeneous air flow the audio signal
also travels by the shortest straight-line pathwith a speed dependent on the speed of theoaur fl

The dependence of the transmission time intervésdnce of the acoustic signals propagating
from the point A to the point B and back on theamif airflow speedis can be derived as follows.
Considering a channel of rectangular cross seatfowidth b and heighth of the vertical walls.
Longitudinal section of the working is presentedtioa Fig. 1. A point is located at the beginningaof
Cartesian coordinate system, the point B has coates a,b.
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Fig. 1 The scheme ofthe air flow measuring in wogki(left). The acoustic ray vector v is
composed of the sound velocity veatand the airflow velocity (right).

If the air in the channel does not move, then thend signal with speed passes to the receiver

during timet, =+a*+b*/ c, spreading along the shortest straight path AB.
In the presence of a homogeneous airfloy) = const, the sound signal also travels the path AB

along the shortest straight path, but at a spdet depends on the speed of the air flow, under th
condition that the radiator diagram has a sufficieidth. The speed is determined as follows.
The angleg - y between the vectors andv by the sine theorem sn(8 - y)/u=siny /c so

expressingthe angfethroughy (see Fig. 1 on the right). Hence we obtain
sin(B-y)=Msiny, coB= coy+ -y ¥ cgs AM? Sig'»-M Sp (1)

The length of the vectow is determined by the cosine theorefe ¢ +u®+ 2cu cosfB

The time ofthe signal passage is equal,jo=+'a* + b’ / v, whose expansion in the Mach number
has the form

2 12
tAB:to+l[_aM+ 22 +b 2—al\/lgj
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To measure the air speadthe difference in the reception timés =t,, —t,; of signals from the
inverse ray path from point B to point A and alamgtraight trajectory from point A to point B is
determined. The timek; andtg, are distinguished by the sign of the Mach numberthe terms of the

expansions for odd powers of the Mach number hgposite signs, and for even powers coincide.
Therefore, the expansionaf includes terms only even powers.

b
at=22(M+M*+OM*) = 2 Q@+M?+OM %), Q= [u(y)dy=bu
c bc 0

Thus, for a homogeneous flow rate Q is measurenigr the difference in the arrival times of the
pulses to the converters according to the formula

b 2
Q :Z—CaAt(lm) )

The relative error is equal to the square of thetMaumbeA =-M? +O(M?). Formula (2) is
used as the basis forair consumption in mines measnt by method [1, 2]. It remains unclear how
the inhomogeneity of the velociyy) distribution affects the erray.

Below we study the difference of time pulses in #@weflow with an arbitrary velocity diagram,
assuming that the length of the acoustic wave isthamaller than the length of the air duct. For the
legitimacy of this assumption, it is necessaryde amitters with a frequency fmore than 10,000A4z.

this frequency, the length of the acoustic wave ¢/ f in the air is less thaB40 /10 = 3.4 10° m.
The typical widths of air an air duct in the mingsiot more than 10 m. Therefore, the conditigrl



is satisfied and the laws of geometric optics caruged to propagation of the acoustic beam (see [5]

§53).

It is shown that for any velocity diagraagy) the air flow Q is determined through the differenc
in arrival times of pulseat according to formula (2) with relative error:

A=—|\ﬁ2+2"’1—‘21 2—a—:—AI\_/I3+O(M4),
b 2b
iy ) T e
M(y)dy, AMZ=—[(M(y)=M)’dy, AM®=_[(M(y)-M)dy

M =+
b
The relative error is equal to the square of theraye Mach numbe¥l ?> and the terms with the

quadraticAM ? and cubicAM?® dispersions of the distributiokl (y).Fora=b andall b formula (3)

Oty T

is simplified:
3
A=-fi2+2am2 - 2M +O(M*%, a=b
o M @)
_2 2V soMmY), al b

A=
2b* M
The result (4) determines the technical charatitesisf the acoustic anemometer for measuring the

airflow in the mineworkings according to the progezlproposed in [1, 2].
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Fig.2. Diagrams of velocities.

Here are some examples of calculating the erroflogé rate measurement. To do this, let us

consider the following family of speed diagrams:

M(y) = u(y)/c= MU(y,A), U (y,A)=§y<1— y)(A- Ay),
A

B= [ y(L-y)a-Ay)y=<-.



For this family, the quadratidM ? and cubicAM* dispersionsare the following :

2:28_286\"'1%2'\]2 AM3:—£M3
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The graphs of the diagrams whenA=0; -1 and-3/2 are shown on Fig. 2. For these values,
with a = b using (4), we find the following error values:

A=0: A=-05M?, A=1: A=-02B1%,6 A= 3/2:A= 2°

4
Whena(l b for all values of A, the error isiA :%(%j M?2.

As can be seen, for all the diagrams, the relaivers fora = b are small in the order of the square
of the average Mach number. Exceptions may bethgrains with pronounced backflow. For them,

the coefficient ofM? can grow strongly. The error, however, & b and non-homogeneous flow
contains multiplie(a/b)* which becomes fom/b>5 anomalously large. Therefore, it is not
advisable to choose such relations for flow measard.

We proceed to the derivation of the error formi&sand (4). It reduces to a boundary problem for
the nonlinear differential equation for the acouisay trajectory . Its solution must be construated
the form of an expansion in Mach number up to kel tdegree inclusive.

The trajectory of the acoustic beam. The velocity vector v of the signal propagationais
summand of thesound signal vector directed ategh¢h axis x and vecton = (u(y),0) parallel to

axis x (see the right figure )= (ccosf +u (y)c sing with the length
v=((ccosB+uf+ csind§ ¥?=c(® M cog+M?2% ,M=u Y )¢5)

whereM - is the local Mach number, armbs/ is expressed in terms of trigonometric functiohs o
the angley - inclination of the tangent path of the ray te #xis x.

Let the sound signal be fed at a po(D, 0) located at the origin. The elementary duratiomagf

movement is defined asit =ds/v, where ds=dy/siny- is the elementary segment of the path,
directed along the velocity vector v. The time bE tsignal receptiont,; at a pointB(a,b) is

determined by the summand of all the time intendalglong the ray trajectoryas.

. . ds ¢ dy
Using (5), we find teg=|—= , 6
903 A JAc(1+2M cosB +M? ¥ siry ©)

0

The trajectory of theacoustic signal propagatiodatermined from the Fermat minimum principle,
which is formulated as follows (see [6], p. 87, [7] 374).

Among all paths from point A to point B the actual path of the acoustic signal passes in the shortest
time.



The method proposed for solvingthis problem is ement in connection with the fact that the
minimum value of the found functiorta}, is the desired quantity.

We are looking for the trajectory of an acoustigirathe form of a functior(y) .
The trigonometric functions of the anglere expressed in terms of the derivative of tmetion
p=dx/dy.

i: ]_+(

5 cosy _
siny ’

—=p(7)
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©

Substituting (7) into the functional (6), let uadiits expansion in Mach number with the accuracy
up to M3inclusive .

b
_[ady _ 2 M2(1+2p2) 3 o
tie = | —=—L(P.Yy), L(p,y)=y1+p °-M(y)p+———=—"=-M"p, p=x'(y) (8
AB !C 2/—1+ p2

The trajectoryx(y) is the functional extremis and can be found fréva Euler equation for the
functional (6) [5]
doL_,
dy op

The beam shapg(y) selected here compares favorably with the traafig/(x) in that equation
has the decision

oL_ p M (¥)*P(3+2P%) _y s ine = 9
o e p M(y) + 2L+ P M(y)” =K. 9)

where K is some constant.

Despite the fact that the equation can be intedrateisstill a complex non-linear differential
equation with respect tp = dx/dy with an arbitrary functiorM (y) and indefinite K. The solution

x(y) must satisfy the conditiow(b) = a. Resolution will be found in the form of expansionstérms
of Mach number to the cubic terms inclusive.

Let us find the solution of equation (9) with resp& p. The solutionp(K,M) is found in the
form ofMach number expansion up to members oftiivd tlegree inclusive.

BK *
2(1_ K 2 )7/2 )

, 4K®-K®
2(1_ K2)5/2

K M (y)

P= 1-K?2 * (1—K2)\/1—K2 *

M (y) M (y)? (10)

Using conditionsx(0) = 0, x(b)=a we obtain the equation for constant K :
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K
mww:% + +M +M
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: b \ (12)
bM = [ M (y)dy, bM? = [(M(y))°dy, bM°=[ (M (y)’dy,

whereM, W, M3-the average values over the cross section Macibar and its powers.
From equation (11) the constant K can be foundhasexpansion of the Mach number powers .

_a - _ —,3a/a’+b’ —5 3+ 4adb?
K=——=-M+K,+K;, K,=M -M )
\/m 2b2 2)2 (a2+b2)32
= GHEDTHDY) Gz BIE@ D) s &1
2b piel
Pulses time difference. Substituting (12) into (10) and then into the fumeal (8), we find the
required time in the form of an expansion in thembar of Mach: zero termi, and t,t,,t;

proportional to the first, second and third degré&lach number. The difference in time of pulags
consists of members with odd powers of the Machberm

(12)

K

tg Sttt tt+ty At=ty, —tg =2, +ty), - leél\ﬁ,
c
a%ﬁﬁﬂ%ﬁﬁ+jﬁﬂ (13)

2b*M

lend
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The term—2t, defines the first term in the rate equation (2§, thtiot, / t, is the relative error. For
a = b the formula for the relative error is simplified

A=-=2=-4M?+ - (14)

The expression for the relative error is convemyengéxpressed in terms of quadratic
AM? = (M - M)? and cubicAM? = (M - M)? dispersion using the following equalities:

M2=(M+AM)2=M2+AM?2

M3=(M +AM)3 =M+ 3MAM 2+ AM 3
Substituting these expressions in (13) and (14)wtelge desired formulas (3) and (4).
The proof is finished.

CONCLUSION

Regardless of the detailed distribution of thevaiocity in the working section the airflow rate is
almost proportional to the difference signal recegyulsesAt from point B to point A, and vice versa.
The relative error of time-pulse flow measuremenisists of the difference between the relativererro



of pulsesAt and the relative errak of proportionality of the law (2), expressed bg flormula (3) and
(4). The difference between the pulges as follows from the formula (2) proportional gitudinal

dimensiona. To improve the accuracy of the measurement & t¢jiantitya should be increased.
However, for all b the value of error contains, according to (4), ahnormally large

multiplier(a/b)4 for cubic dispersion of nonuniform velocity prefil Therefore, the ratia/b>5

chosen is inappropriate. The/b =1 relation seems to be optimal for the most accufbie
measurement.

The relative erroA is of order of Mach number square. It dependonbt on the average value of
the Mach number, but on the velocity profile fofrormulas (3) and (4)obtained for the relative error
can be used as the technical characteristics girtsygsed method anemometry.
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