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Summary In recent years it became apparent that geophysical abrasion can be well characterized by the time evolution N(t) of the number 

N of static balance points of the abrading particle. Static balance points correspond to the critical points of the particle's surface 

represented as a scalar distance function r(u,v,t) measured from the center of mass of the particle. While N(t) is important for 

geophysicists, its computation poses challenges, because in the computational model r(u,v,t) is often replaced by its finely discretized 

approximation rΔ(u,v,t) and the number NΔ(t) of critical points corresponding to rΔ(u,v,t) is, in general, not identical to N(t).We describe 

the geometric theory relating NΔ(t) and N(t) and also provide an algorithm to compute N(t) based on rΔ(u,v,t). 

 

 
Smooth curves, surfaces and their discretizations 

 

We regard a smooth, closed, embedded convex curve C given as a scalar, polar distance r(φ), measured from the 

center of mass of the planar disc defined by C. We assume r(φ) to be a Morse function and call a point r(φ0)∈C a static 

equilibrium point if r’(φ0)=0 (where ’ denotes dr/dφ). Depending on the sign of the second derivative we distinguish 

between stable and unstable equilibrium points and denote their numbers by S and U, respectively and as a trivial 

consequence of the Poincaré-Hopf Theorem [1] we have S=U. We refer to N=S+U as the number of global equilibria 

associated with C. In a numerical approximation C is often replaced by its fine polygonal discretization cΔ, which is 

obtained by constructing an equidistant Δ-mesh and connecting the meshpoints by straight lines. Analogously to the 

smooth curve, we may define the numbers SΔ=UΔ associated with the polygon. In [2] we showed that in general, in the 

Δ →0 limit SΔ and UΔ approach limit values S0>S, U0>U. We refer to N0=S0+U0as the number of local equilibria 

associated with C. In [2] we gave explicit formulae to compute N0, based on N, the location of the center of mass and 

the curvature of C.  Local equilibria appear in spatially strongly localized “flocks” in the vicinity of global equilibria. 

 

In 3 dimensions, the situation is analogous, however, here we have three types of equilibria and their respective 

numbers are related again by the Poincaré-Hopf Theorem: S+U-H=2 and in [2] we also provided the explicit formulae 

to compute the number of local equilibria SΔ, UΔ and HΔ. If Δ is small but finite, we can visually observe the 

phenomenon: Figure 1 illustrates the flocks of local equilibria on finely discretized tri-axial ellipsoid. 

 

 
Figure 1: Part a0 shows the equilibrium points of the ellipsoid with axis ratios a : b : c = 1.25 : 1.15 : 1. The stable, 

unstable and saddle points are denoted by s1 and s2, u1 and u2, and h1 and h2, respectively. • Part a1 shows the 

equilibrium points near u1 and h1. Faces with a stable point are shaded, unstable vertices are marked with ×, and edges 

with a saddle point are drawn with bold lines. • Part b shows the equilibrium points near h1. The zoomed hexagonal 

region is framed in Part a1. • Part c shows the unstable equilibrium points near h1 inside the hexagonal region P. • Part 

d0 shows the stable equilibrium points near h1 with the triangles T1 and T2. These triangles are separately shown in 

Parts d1 and d2, respectively. • Part e0 shows the saddle type equilibrium points near h1 with the parallelograms R1, 

R2 and R3. Parts e1, e2 and e3 show these parallelograms separately. 
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Co-evolution of local and global equilibria 
 

In a discretized numerical scheme the surface C is represented by a set of points and local equilibria are the primary 

observable objects. In geometric evolution equations (such as curvature-driven flows [4]) the time evolution N(t) is 

often of prime interest, however, we can primarily observe NΔ(t). Here we show that as a consequence of the results in 

[2], there is a remarkable coupling between the two functions: whenever N(t) suffers a jump, N0(t) escapes to infinity 

and, as a consequence, for sufficiently small Δ, NΔ(t) displays a sharp peak. Figure 2 illustrates this phenomenon on 

the time evolution of a planar curve under the curve-shortening flow [4]. 
 

 
 

Figure2: Co-evolution of local and global equilibria under the curve-shortening flow. Contours are re-scaled to have 

constant area. Main plot: red lines shows N(t), black line shows NΔ(t). Observe peaks of the latter coinciding with 

jumps of the former. Lower plots: distribution of equilibria in physical space. 

 

Conclusions 
 

We showed how the number N0(t) of local equilibria on finely discretized curves and surfaces co-evolves with the 

number N(t) of global equilibria, associated with the smooth surface. The former is easier to observe, the latter is more 

important for physical applications so their co-evolution may offer a valuable tool for physical modeling. 
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