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Summary. Dynamical systems with discontinuities are considered. The systemizaesvise smooth with the phase space partitioned
by hypersurfaces where the non-smoothness occurs. Transitidiitioas for the state, the first variation and the second variation at
these surfaces are derived in a general form. Although the systetaic® discontinuities, the overall system evolution is smooth if the
transition surfaces are transversally intersected by the solution cureesdic solutions and their smooth bifurcations are calculated
by a shooting method together with an arc continuation method. The mett®dustrated by examples with impacts, friction and
bilinear spring stiffness.

Extended abstract

Problem description
The evolution of the state of a nonlinear dynamical systede#ribed by a vector differential equation,

& = f(x,t), (1)

wherex represents the state in ardimensional phase spacsds the time and a dot over a variable denotes a derivative
with respect to time. Systems with discontinuities are abtirized by codimension-one hypersurfaces in the phase
space on which the state, the right-hand sides of the diffetleequations or some derivative of the right-hand sidg ma
change by a jump. A jump in the state may occur in mechanicakgys with impacts, where the velocities may change
instantaneously, the right-hand side may have a jump if oheefon a system changes abruptly or in systems with dry
friction if the sliding velocity changes sign, and a derivatmay change for instance for systems with a bilinear gprin
stiffness.

The evolution of a discontinuous system consists of the smealution on each subregion of the phase space between
hypersurfaces of discontinuity and transition conditiahshese hypersurfaces. As long as the solution crosses/the h
persurfaces transversally and the hypersurfaces andathgtion conditions are smooth, the whole evolution casgié

the stitching together of smooth parts and is therefore ab@ensmooth, except at the hypersurfaces. This means that
all well-known ordinary bifurcations of periodic solutiertan occur in these non-smooth systems. In addition, dpecia
bifurcations that can only occur in non-smooth systems neafpbnd if the condition of transversal intersection at some
hypersurface is violated, which will not be investigatedehédn this presentation, the calculation of periodic dohs of
non-smooth systems, their continuation if a parameter&nghd and the continuation of bifurcations of these petiodi
solutions if more parameters are allowed to vary will be gésed. In a sense, it is a generalization and a completion of
results presented earlier [1].

Transition conditions
Let a hypersurface be defined by the equation

g(w’ t) =0 (2)
and if the solution crosses the hypersurface at the tjrted the transition condition for the state be given by

xt =Sz ,1), (3)

where a superscript plus denotes a variable just after #mesition and a superscript minus a variable just before the
transition.

The variational equations describe the evolution of smeitysbations of the statér, which may be thought of as
derivatives with respect to the initial conditions or witkspect to system parameters, as
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ox = a—mém. 4)
The transition conditions for these variations can be atellias (see for instance [2])
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This can be simplified somewhat$f is the identity and the system is autonomous.

Periodic solutions together with their stability can berfdby a shooting method and the evaluation of the monodromy
matrix and a branch of periodic solutions can be found by aantinuation method if a parameter of the system is made
variable. The arc continuation method calculates a salutear some known solution in two steps: first, a predictiep st

is made by some numerical extrapolation and then an accsohtéon is found by an iterative method.
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For the continuation of bifurcations, a second parametsrthde made variable. As variations of eigenvalues of the
monodromy matrix are needed, second-order variationstiviin transition conditions have to be determined. Thege ca
be found by taking another derivative of the variationala@ns (4) and the transition condition (5). In order to reslu
the number of equations that have to be integrated, an adjiiable method for the calculation of the variations & th
eigenvalues of the monodromy matrix is used. As the tramsitbndition for the adjoint variables contains the invake
the matrixT', the method breaks down if this matrix is singular, as camitsystems with friction. This difficulty can

be circumvented by realizing that the motion effectiveketmplaces in a lower-dimensional subspace of the phase spac
in this case.

Higher-codimension bifurcations can be handled in a similay if they are still characterized by conditions on the
eigenvalues of the monodromy matrix.

Someillustrative applications
The methods will be illustrated for some example problentse first is a system with impacts, then a system with dry
friction is considered and finally a system with a bilinedffratss element is considered.

Conclusions

General transition conditions for non-smooth systems baea derived. These have been applied in methods to caculat
periodic solutions and their bifurcations. Although sfieaiases have been treated in the past, this general fratkewor
has not been presented in the open literature so far.
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