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Bifurcations of periodic solutions for systems with discontinuities
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Summary. Dynamical systems with discontinuities are considered. The systems are piecewise smooth with the phase space partitioned
by hypersurfaces where the non-smoothness occurs. Transition conditions for the state, the first variation and the second variation at
these surfaces are derived in a general form. Although the system contains discontinuities, the overall system evolution is smooth if the
transition surfaces are transversally intersected by the solution curves.Periodic solutions and their smooth bifurcations are calculated
by a shooting method together with an arc continuation method. The methods are illustrated by examples with impacts, friction and
bilinear spring stiffness.

Extended abstract

Problem description
The evolution of the state of a nonlinear dynamical system isdescribed by a vector differential equation,

ẋ = f(x, t), (1)

wherex represents the state in ann-dimensional phase space,t is the time and a dot over a variable denotes a derivative
with respect to time. Systems with discontinuities are characterized by codimension-one hypersurfaces in the phase
space on which the state, the right-hand sides of the differential equations or some derivative of the right-hand side may
change by a jump. A jump in the state may occur in mechanical systems with impacts, where the velocities may change
instantaneously, the right-hand side may have a jump if the force on a system changes abruptly or in systems with dry
friction if the sliding velocity changes sign, and a derivative may change for instance for systems with a bilinear spring
stiffness.
The evolution of a discontinuous system consists of the smooth evolution on each subregion of the phase space between
hypersurfaces of discontinuity and transition conditionsat these hypersurfaces. As long as the solution crosses the hy-
persurfaces transversally and the hypersurfaces and the transition conditions are smooth, the whole evolution consists of
the stitching together of smooth parts and is therefore as a whole smooth, except at the hypersurfaces. This means that
all well-known ordinary bifurcations of periodic solutions can occur in these non-smooth systems. In addition, special
bifurcations that can only occur in non-smooth systems may be found if the condition of transversal intersection at some
hypersurface is violated, which will not be investigated here. In this presentation, the calculation of periodic solutions of
non-smooth systems, their continuation if a parameter is changed and the continuation of bifurcations of these periodic
solutions if more parameters are allowed to vary will be discussed. In a sense, it is a generalization and a completion of
results presented earlier [1].

Transition conditions
Let a hypersurface be defined by the equation

g(x, t) = 0 (2)

and if the solution crosses the hypersurface at the timet, let the transition condition for the state be given by

x+ = S(x−, t), (3)

where a superscript plus denotes a variable just after the transition and a superscript minus a variable just before the
transition.
The variational equations describe the evolution of small perturbations of the stateδx, which may be thought of as
derivatives with respect to the initial conditions or with respect to system parameters, as

δẋ =
∂f

∂x
δx. (4)

The transition conditions for these variations can be evaluated as (see for instance [2])
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This can be simplified somewhat ifS is the identity and the system is autonomous.
Periodic solutions together with their stability can be found by a shooting method and the evaluation of the monodromy
matrix and a branch of periodic solutions can be found by an arc continuation method if a parameter of the system is made
variable. The arc continuation method calculates a solution near some known solution in two steps: first, a prediction step
is made by some numerical extrapolation and then an accuratesolution is found by an iterative method.
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For the continuation of bifurcations, a second parameter has to be made variable. As variations of eigenvalues of the
monodromy matrix are needed, second-order variations withtheir transition conditions have to be determined. These can
be found by taking another derivative of the variational equations (4) and the transition condition (5). In order to reduce
the number of equations that have to be integrated, an adjoint variable method for the calculation of the variations of the
eigenvalues of the monodromy matrix is used. As the transition condition for the adjoint variables contains the inverseof
the matrixT , the method breaks down if this matrix is singular, as can occur in systems with friction. This difficulty can
be circumvented by realizing that the motion effectively takes places in a lower-dimensional subspace of the phase space
in this case.
Higher-codimension bifurcations can be handled in a similar way if they are still characterized by conditions on the
eigenvalues of the monodromy matrix.

Some illustrative applications
The methods will be illustrated for some example problems. The first is a system with impacts, then a system with dry
friction is considered and finally a system with a bilinear stiffness element is considered.

Conclusions
General transition conditions for non-smooth systems havebeen derived. These have been applied in methods to calculate
periodic solutions and their bifurcations. Although specific cases have been treated in the past, this general framework
has not been presented in the open literature so far.
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