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Summary. This paper presents an interaction analysis of a generalised nonlinear isolator-elastic beam coupling system. In this system, 

an elastic beam-like structure is supported by a geometrically nonlinear suspension system of which a horizontal degree is introduced 

to provide a physical means for realizing the required horizontal force in some reported nonlinear isolation systems. The generalised 

dynamic equations of the interaction system are derived; in which three reduced models are obtained by introducing the related 

conditions into the generalised model. The nonlinear dynamic behavior on equilibria and stabilities of the system are investigated, 

and the dynamic interaction mechanism of the system is revealed. Following the mathematical analysis of the system, two examples 

illustrating applications of the developed theory are discussed. One simulates ground vibration tests of aircrafts, which requires an 

extreme low supporting frequency. Another involves structure dynamic tests in laboratories, where a rigid supporting foundation is 

expected. The investigated system can provide extremely low or high supporting stiffness and frequencies to satisfy special 

requirements for high precision vibration isolations. 

 
Introduction 

 

High performance vibration suspension systems with a very low or a very high stiffness are widely required in 

engineering applications. For ground vibration tests (GVT) of full scale aircrafts, the suspension frequency of the 

assumed rigid aircraft on the supporting system must be lower than one third of its first elastic natural frequency for 

accurate aircraft’s flutter analysis. The weight of a large aircraft is very huge but its first elastic natural frequency is 

quite low so that the stiffness of the supporting system must have a big static stiffness to support the large weight and 

also a very low dynamic stiffness to have a very low supporting frequency [1-2]. The low supporting frequency is also 

a fundamental standard for effective vibration isolations [3-4] of high precision optical instruments used in space, such 

as for gravitational wave detection [5]. On the other hand, dynamic tests of structures in laboratories are often expected 

to be fixed on a rigid foundation, so that the stiffness of supporting system must be extremely high, otherwise, the 

foundation could not be considered as rigid.  As we have learnt, an extremely “rigid” foundation for static tests could 

be very soft for dynamic tests with high frequencies. To design these supporting systems with particular performance, 

one approach is to adopt active feedback controls in a passive system [6-7]. This method requires an energy supply for 

the control system, which sometimes is difficult if the required energy is huge. Another one is to use nonlinear springs 

with a variable dynamic stiffness. For GVT of aircrafts, a nonlinear supporting system was proposed [1-2] to obtain a 

very low supporting frequency. The detailed investigations on designs, practical techniques and performance of 

nonlinear isolation systems were reported quite late, see, for example, references [8-14]. Moreover, nonlinear dynamical 

behavior on stabilities, bifurcations and chaos of this type of nonlinear isolation systems were not reported before recent 

publications [15-17]. While reading available publications on nonlinear isolation systems, we have noted that there are 

no publications involving integrated analysis on nonlinear isolator-structure interactions. As discussed for the analysis 

of structure-control interactions [18], the dynamic characteristics of both structures and control system are found to 

affect each other. Therefore, to assess the efficiency of a nonlinear isolation system, it is necessary to consider 

interactions. This paper intends to develop an integrated interaction analysis of a generalised nonlinear isolator-

structures coupling system covering some reported systems by choosing its suitable parameters. This system introduces 

a horizontal degree physically to realise the required horizontal forces in [9] and [17]. Following a mathematical 

analysis of the system to develop the general theories on its equilibria, stabilities and small vibrations about each 

equilibrium point [19-21] and to reveal their interaction mechanism, two practical applications are studied. One 

simulates GVT of aircrafts to design a suspension system with a very low supporting frequency and another considers 

structure dynamic tests in laboratories, for which a rigid supporting foundation is expected. 

 

Mathematical model of an integrated nonlinear isolator-beam interaction system  

     

Fig. 1 shows the integrated system in which an elastic beam is supported by a generalised nonlinear suspension unit. 

The beam is uniform and subjected to two harmonic forces tF 00 cos  applied symmetrically at point 
0 in a coordinate 

system YO  fixed at the middle point O  of beam. There is a lumped mass M2  connected at point O  by a rigid rod 

with its mass into M2 . The beam is of span length S2 , mass density   per unit length and bending stiffness EI . 

The deflection ),( tY  of beam is a function of its material point  and time t . The mass M2 is supported by a generalised 

nonlinear suspension system symmetrical to the vertical axis yo , and therefore it moves in the y direction only. The 

top ends of two linear inclined massless springs of stiffness k and non-stretched length l are connected to the mass M2

and their other two ends are respectively connected to two carts A and B of mass m  allowing horizontal motions. There 

are two horizontal massless springs of stiffness 
1K  with non-stretched length 

1L and two dampers of damping 

coefficient 
1C respectively connected to carts A and B positioning at x . Along the symmetrical axis yo , a spring-



 

2 

 

ENOC 2017, June 25 – 30, 2017, Budapest, Hungary 
 

 

damper set, consisting of a spring with stiffness K2  and its non-stretched length L with a damper of damping coefficient

C2 , is connected to mass M2 . The model shown in Fig. 1 is a generalised model of structure-nonlinear isolator 

interaction system for practical designs in engineering. The horizontal spring-damper unit ),( 11 CK  aims to provide a 

means for the two horizontal forces added at the two carts in order to adjust the vertical dynamic stiffness of the total 

system. A suitable adjustment of the initial length
1L of the spring

1K results in a pull or push force applied at two carts 

A and B, which increases or decreases the vertical supporting stiffness of the system, respectively. The vertical spring-

damper unit ),( CK supports the static weight of the mass M2  and the structure. The two spring-damper units ),( ck are 

the main elements with geometric nonlinear characteristics to adjust the dynamic supporting stiffness. The dampers in 

the system provide the adjusted parameters for the stability requirement of the system. Based on this generalised model, 

several simplified models [9, 15-17] can be obtained by introducing additional conditions or reducing some elements. 
 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 The integrated nonlinear isolator-elastic beam interaction system 

 

Governing equations of integrated interaction system 

Considering the symmetry of system, we investigate its right half-part to derive the governing equations. It would be 

convenient to choose the origin o of coordinate system xyo   and the origin O  of beam coordinate system YO    

respectively located at their corresponding positions in a static equilibrium state, when the mass M2 and the two inclined 

springs k  are on the horizontal axis xo  with mass m at
0x .  To realise this, we can choose a suitable extension

LY  0
of the vertical spring K  by investigating the static equilibrium of the system subject to the gravity only, i.e. 

.,)(,/)(),( 1011101 LXKklxkKKSMgSMgK                               (1.1) 

Under these two reference coordinate systems, the gravity will be excluded in the governing equations and the variables 

y and ),( tY   represent the dynamic displacement of the mass M2 and the dynamic deflection of the beam relative to 

the static state, respectively. Obviously, at point 0 , the function )(),0( tytY  is the vertical displacement of the 

lumped mass, due to rigid connection between them. In addition, the symmetrical conditions at point 0 of the beam 

require the shearing force and the rotation angle to be vanished at 0 . Now, using the Newton’s second law in 

association with the beam theory to investigate the dynamic equilibrium of beam, mass M2 and cart B, we derive the 

following governing equations. 

 

Dynamic equilibrium equation and boundary conditions of beam structure 

.0,,0;,0;cos)( 000

)IV(   bsfYYSYYtFYY                      (1.2) 

Here, ,/())(   ,/())( t  etc.,
bsf  represents a dynamic shearing force acting on the beam section 0 by the 

rigid rod, and () denotes the Delta function. The beam is a linear elastic structure, so that its motion can be 

represented using a mode superposition method [22]. In engineering, there are many nonlinear systems consisting of 

linear substructures connected by non-linear connectors, for which the mode superposition approach provides a very 
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effective numerical model to formulate the motions of linear substructures [23]. The author has successfully and 

effectively used this approach to deal with numerical analysis for complex linear [18, 24-28] and nonlinear [29-32] 

dynamic systems involving fluid-structure interactions, control-vibration couplings, airplane landing impacts on VLFS, 

etc. This method is adopted to describe the beam motion. The deflection ),( tY   of the beam is represented by a mode 

summation form 

    ,,),()(),( 2121

T

NNYYYttY    ΦYΦY                (1.3) 
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based on the non-dimensional symmetrical mode functions )(nY , ),...,2,1( Nn  , of the uniform free-free beam. Here, 

N denotes a number of the retained mode functions )(nY and 
n  represents a generalised coordinate corresponding to 

mode n. These mode functions satisfy the following orthogonal relationships, 
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The sub-index n indicates the mode number of the free-free beam,
n̂ ,

nK and
nM represent the n-th natural frequency, 

generalised stiffness and mass, respectively. For the free-free beam, its first mode is a rigid mode with frequency 0ˆ
1 

and mode function .11 Y To distinguish this rigid mode with the elastic modes of the beam, a subscript “e” will be used 

to denote the related variables of the elastic modes, if this clarification is necessary in the following description. For 

examples, we can write     ,,1 1

TT

ee ΦΦYY  etc. Substituting Eq.1.3 into Eq.1.2 and using the orthogonal 

relationships Eq.1.4, we obtain the following mode equation describing the beam motion  

).ˆ(diag),(diag),(diag,cos)()0( 22
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T
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T KMtFf  ΛkmYYkΦΦm                  (1.5) 

 

Dynamic equilibrium equations of the nonlinear supporting unit 

,)()(
11








 


sb

kc
f

K
xKKxCCxM                                                           (1.6) 

  .,,

,,
0

0
,,

0

0
,

0

0

22

101

1

2

1

yxLXyx

kl

kK

kKc

C

C

M

m

T

k

T

c







































x

IKKxxCCM
                       (1.7) 

Here, 
1 represents the static extension of horizontal spring 

1K  in the static state defined by Eq.1.1. The force
sbf  

denotes the reaction force from the beam to the lumped mass M2 .  

 

Interaction conditions between the beam structure and the nonlinear suspension unit 

On the interaction section 0 between the beam and the nonlinear suspension unit, a dynamic equilibrium condition 

and a geometrical constraint condition are required, i.e. 

      Equilibrium:               ,,0 fffff sbbssbbs                                             (1.8)    

Geometrical constrain:        ).(),0( tytY                                                                          (1.9)  

By using Eq.1.3, this can be written in the mode form:  

).0(, 00 YYΦY  y                                                                (1.10) 

 

Non-dimensional dynamic equations 

Equations 1.1-1.10 give the governing equations describing the dynamics of the integrated interaction system. To derive 

the non-dimensional equations of system, we introduce the following non-dimensional parameters, 
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Dynamic equilibrium equation and boundary conditions of beam structure 
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Dynamic equilibrium equations of the nonlinear supporting unit 
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Here, )(qε and )(qk represent the nonlinear damping matrix and the nonlinear stiffness matrix of the system, 

respectively. 

 

Integrated coupling matrix equation  

Combining Eqs. 1.12 and 1.13, we obtain the integrated coupling equation of system in the matrix from 
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The total degree of freedom of this system is 1+N where N is the mode number chosen to describe the beam motion.  

We can rewrite Eq.1.15 in the phase space form  
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Here, super-indices “L” and “N” identify the linear and nonlinear parts of matrices, respectively. The coupling matrix 

Eq.1.15 or 1.17 describes the dynamics of integrated interaction system. Based on these, we can investigate the coupling 

mechanism between the elastic beam and the nonlinear isolator and energy flow characteristics of system [33-34]. 
 

Interaction analysis  

Equilibrium points 

The static equilibrium points  Tq 0100 ΦQ  and  TTq 0Φ 200  of the system can be derived from Eq. 1.15 by 

vanishing velocity Q , accelerations Q  and external force 0F
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Table 1. The equilibrium points )4,3,2,1(  of the system 
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Horizontal coordinate Vertical coordinate 
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Here, 2/2/    represents the angle oBM between o-x axis and the right inclined spring. A positive value 

020 q  or 02   implies the equilibrium point locates on the positive o-y axis. This set of equations is nonlinear. In 

general, an iteration approach is required to obtain its solution. However, as given in Eq.1.1, we have chosen the origin 

of reference system xyo   at its static equilibrium position with 
010 xq  and 020 q , which gives the equilibrium point 

(1). For the case of 020 q , the second equation in Eq.2.1 requires 0/ 0

2  k , which is then substituted into the first 

equation in Eq. 2.1 to give the values of .10q  Table 1 lists the equilibrium points of the system. Physically, at an 
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equilibrium point )( , the mass M and m are located at point )(

20

q on the vertical axis and point )(

10

q on the horizontal 

axis, respectively, while the beam is in its static deformation state with its middle point O follows the mass M locating 

at a corresponding position.  The value of ),( 21   defines an equilibrium point as well as the corresponding parameters 

of the system.  For example, 02   gives points (1) and (2) while 02   defines points (3) and (4). To derive the 

equations which reveal the influence of the beam motions on the nonlinear suspension unit or vice versa, we can 

separately investigate the governing equation of the nonlinear unit or the beam which incorporates the effect of the 

other side, i.e. the beam or the nonlinear unit. The interaction conditions in Eqs.1.8-1.10 provide a bridge to obtain 

these equations as follows. 

 

Equation governing the influence of beam motions on nonlinear suspension unit 

Added parameters: From Eq.1.12, it follows that 
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Therefore, the symmetrical matrix Y  is definitely positive and its inverse matrix exists, so that from Eq.2.2 we obtain 
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Substituting Eq. 2.3 into Eq. 1.12, we obtain 
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YYYYΛmYYm                                                      (2.4) 

which, when pre-multiplied by
0Y , gives  

.cos00000

12

00

1

0 tFfyy T

F

TTT
YYYYYYΛmYYYmY                                                 (2.5) 

For the free-free beam, it is not possible that the all modes ,0)0( nY ),...,2,1( Nn  , so that the real number 

 0)0(
1

2

00 


N

n
n

T

N YYY ,                                                                      (2.6) 

and therefore from Eq.2.5 we derive the interaction force f  

)./(,/,/,cos 00

12

00

1

00 N

T

FbN

T

bN

T

bbbb fkmtFfykymf  YYYYΛmYYYmY                           (2.7) 

Replacing the interaction force f in Eq. 1.13 by Eq.2.7, we derive   

  .cos0),diag(0,,)diag(0,

,)]}()([{)]([2)(

0

1

2

tFfkm
T

bbbbbb

bbb





fkm

fqqkqkωMkqqεEωMqmM 
                                      (2.8) 

 

          
Fig. 2 the added mass and force factor affected by the retained modes 

Here,
bm  and 

bk represent an additional dynamic mass and stiffness, respectively, which are added to the nonlinear 

suspension system by the beam due to their dynamic interactions. 
bf defines a force factor at which the excitation force 

added to the lumped mass. Equation 2.8 provides a means to investigate the nonlinear support interacting with the 

elastic beam, when designing it to support a structure.   The values of these added parameters depend on the retained 

mode number of the beam. For example, when only rigid mode 11 Y is retained, 1N in Eq.1.3 and therefore we have  

.1,0,,1,11  bbbN fkSmSm m                            (2.9) 

Physically, bm in Eq. 2.9 is the total mass of the beam. Since the beam is considered rigid and there is no elastic 

deformation, the added stiffness ,0bk and the force factor 1bf . Fig. 2 shows the added mass and force factor affected 

by the number 5~1N of retained modes.  

 

Nonlinear stiffness force and potential energy: The two components of stiffness forces are  

qqkqkωMkF )]}()([{ 1

2  bR ,                                                    (2.10) 
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of which the horizontal component is not affected by the beam motion while the vertical component is affected by the 

additional added stiffness of the beam onto the nonlinear supporting unit. We choose the static position  Tq 0100 q

which satisfies Eq.1.1 as a zero point of the potential energy, that is 

   .010110

2

10

2

0  qfqkqmq                                                                             (2.11) 

The potential energy at position q  of the system is given by 

 

.])([
2

1
)(])([

2

1

)()()(
2

1
])(

2

1
[

11

2

2

2

1

2

2

2

2

22

10

2

1

2

1011110

2/12

2

2

2

22

10

2

1

2

1011

2/12

000

qfqqkqkqqqmqfqfqkkqkqqqm

qqfdkd

b

T

b

TT

b

T

R

T



 

 qq

qqqqqωMkqFqq
q

q

q

q

q

q

  (2.12) 

In this equation, the term 2/2

2qkb
 represents the elastic energy of the beam, which vanishes if only the beam rigid mode 

is retained. For the equilibrium point (1), Fig. 3 shows the vertical components of the nonlinear stiffness force and the 

potential energy of the system as the functions of  Tqq 21q and the added stiffness. 

 

 
Fig.3 Vertical nonlinear stiffness force and potential energy for equilibrium point (1) affected by the two beam modes. 

 

Kinetic energy: The kinetic energy at position q  of the system is by 

  ])1([
2

1
)(

2

1
T 2

2

2

1 qmqm bb

T   qmMqq .                                            (2.13) 

The total mechanical energy of undammed system in a solution is a constant, so that we 

    .T C qq                                                                              (2.14) 

 

Equation governing the influence of nonlinear suspension unit on beam motions   

Combining Eqs. 1.12 and 1.13 and eliminating the interaction force vector f , we obtain  

,][)( 011

2
FcΦkΛmΦcΦmm  qNNNN


                                                (2.15) 

,/2,)/(2,)/1(, 0

2

121

22

2

2 T

NNNN qqqk YcYcYkYm                      (2.16) 

This matrix equation describes the beam dynamics influenced by the nonlinear suspension unit. Here, 
Nm , 

Nk , 
Nc  and 

1Nc denote an additional mass, stiffness and damping matrix added to the beam by the nonlinear suspension unit, 

respectively. Due to these added parameters, the dynamic behavior of the beam is as follows. 

(i) The linear beam system now behaves nonlinearly due to nonlinear stiffness 
Nk and damping 

Nc  and
1Nc .  

(ii) The couplings between the normalized mode coordinates of beam are generated by the additional mass, 

stiffness and damping matrices. 

(iii) The natural frequencies of the beam about an equilibrium point are affected, which will be discussed later. 

 

Stability and frequencies of small vibrations about equilibrium points 
Designs of suspension systems concern two important requirements: 1) the designed system has a stable static 

equilibrium position in its working environments; 2) the system has a particular required dynamic stiffness, very high 

or very low, measured by the supporting frequency of small vibrations of the system about the static equilibrium point. 

To reveal these characteristics, we must investigate the behavior about each equilibrium point. To this end, we can 

examine the eigenvalues 
I of the Jacobean matrix of the system at each point from Eq.1.17 or the frequencies II 


i

of small free vibrations of the system about each point using Eq.1.15.  Here, we consider vector QQQ
~

0  in Eq. 1.15 

to derive a linearized equation at point
0Q which describes small vibrations of the system about this point.  

.)()(,
~

)]()([
~

)]([
~

1

10

1

003

0

00000 TIqqTqKFQqKqKKQqCCQM
q

fk TTNLNL 



                     (3.1) 

For an equilibrium point )( , using Eqs.1.14, 1.16 and 3.1, we obtain the following matrices  
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,~2)(,
)/(

)(

,2,
0

0)/(1
)(,

2)(

20

)(

2

)(

1

0

)(

2

)(

1

2)(

1

1102)(

20

)(

2

)(

1

0

)(

2

)(

1

)(

11

2)(

1

)(

0

0

1

)(

11

)(

0

022

2





















 
























 













YY

Y
qC

YY

Y
qK

Y0

0
C

Y
qK

YΛm0

0
K






























T

N

T

T

LN

T

L

Ecm
kfk

Eωmkfkωm





                (3.2) 

Substituting Eq.3.2 together with the definition of 
11

~cEm  and
Kc~ given in Eq. 1.11 into Eq. 3.1, we obtain the following 

equation describing free vibrations about points )(  

  .
)~1(~

~)~1(ˆ,ˆ,
~~ˆ

,
]/)1([/

//)1(ˆ,ˆˆˆˆ2ˆˆ

2

2021

02111

2

111

1

0

2

2

22

0021

00210

2

1

2











































YY

Y
Π

mY0

0
MΦQ

YΛmY

Y
Λ0QΛQΠQM









K

T

K

T

T

T

cEcE

cEmcEωmm
q

kk

kkωm

                (3.3) 

where, we have omitted the superscript )(  which is used to identify an equilibrium point listed in Table 1. However, 

we need to remember that the values of
1 ,

2 and
0 are related to )( . 

 

Natural vibrations: The natural frequencies of system are governed by the real eigenvalue equations of the system        

,0ˆ)ˆˆˆ(,0ˆˆˆ 22  QMΛMΛ


                                                                   (3.4) 

from which we obtained the natural frequencies and corresponding modes of the system in the following matrix forms, 

  .
ˆˆ,ˆ,ˆˆˆ),

ˆ
(diag

ˆ 2

121 ΛΨΛΨIΨMΨQQQΨΛ





 

TT

NI                          (3.5) 

For points (1) and (2) with ( 11  , 02  ), Eq. 3.4 becomes  

,
ˆ

,0~)
ˆ

( 22)2,1(

11

2)2,1(2 ωqmωm 


                                                              (3.6) 

.0
~

)}(
ˆ

]/[{ 2)2,1(

0

22  ΦmYYΛm


k                                                          (3.7) 

There is no coupling between the vibrations in the horizontal and vertical directions. Eq. 3.6 directly gives the natural 

frequency )2,1(

1

ˆ



in the horizontal direction of the system. However, Eq. 3.7 still needs to be solved by using numerical 

methods, which will provide the N natural frequencies ),1,,3,2(,
ˆ )2,1(  NII 


 of the beam affected by the nonlinear 

unit, as defined by Eq. 2.10.  Because of no coupling in Eqs. 3.6 and 3.7, the corresponding mode vector matrix takes 

the following form 

.~

)2,1(

1)2,1(











Ψ0

0
Ψ

T
                                                                          (3.8) 

At points (2,3) of ( 02  ), the stiffness matrix Λ̂  is not diagonal, and there is a coupling between the horizontal and 

vertical directions, so that we need to solve Eq.3.4 numerically for the natural frequencies ),1,,2,1(,
ˆ )3,2(  NII 


and 

the corresponding mode matrix )3,2(
Ψ  of the system. 

 

Free vibrations: The damping matrix and stiffness matrix in Eq. 3.3 are non-diagonal, except for points (1, 2) with

02  . For convenience of theoretical analysis, we use the mode transformation 

  ),4,3,2,1(,,ˆ
1

)(   Tq ΦQQΨQ


                                                       (3.9) 

to transform Eq. 3.4 into the following form 

,ˆ,
ˆ

2 )()()()(2)()( 
ΨΠΨΠ0QΛQΠQ

T


                                                 (3.10) 

in which there is only a damping matrix that is non-diagonal. The frequencies of free vibrations and corresponding 

modes are governed by the following complex eigenvalue problem 

.0)i2
ˆ

(,i2
ˆ 2)()()(2)(2)()()(2)(  QIΠΛ0IΠΛ


                          (3.11) 

Since the damping matrix )(
Π


is not diagonal, Eq. 3.11 needs to be solved by a numerical method. As an approximation, 

we may neglect the non-diagonal terms in the damping matrix to obtain the following approximate complex frequencies 

).1,,2,1(,
ˆ

/,1
ˆˆ

i )()()(2)()()()()(  NIEEE IIIIIIIII 


                            (3.12) 

For points (1,2) in association with Eq. 3.9), Eq. 3.10 reduces to  

.
~~~

,)~1(

,~~
)~1(

~

)2,1()2,1()2,1(2)2,1(

111

)2,1(

11

)2,1(

)2,1(

11

)2,1(

111

)2,1(

1)2,1(

ΨYΨΠ

Π0

0

Ψ0

0

Y0

0

Ψ0

0
Π

T

TTT

T

T

cEωm

cEωm






















































                        (3.13) 

As a result of this, Eq.3.11 becomes 
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,0)i2
ˆ

( 1

2)2,1()2,1(

11

)2,1(2)2,1(  q


                                                                (3.14) 

).
ˆ

(diag
ˆ

,}
~

i2
ˆ

{ 1,,3,2

)2,1(2)2,1()2,1()2,1(2

 NI 


 Λ0ΦIΠΛ                                    (3.15) 

From these equations, we obtain the corresponding complex frequencies of free vibrations about points (1, 2) as 

.
ˆ

/,1
ˆˆ

i )2,1()2,1(

11

)2,1(

1

2)2,1(

1

)2,1(

1

)2,1(

1

)2,1(

1

)2,1(

1 


EEE                                                     (3.16)   

).1,,2(,
ˆ

/
~

,1
ˆˆ

i )2,1()2,1()2,1(2)2,1()2,1()2,1()2,1()2,1(  NIEEE IIIIIIIII 


                       (3.17) 

 

The solution for retaining only rigid mode: For an analytical analysis, we retain only the rigid mode of beam, so that  

 ,~~
,0ˆ,

~~,1,1 2

2

1

2

0 qS  ΦΛmYY                                                       (3.18) 

and thus Eq.3.4 reduces to  

./)1(,/,/)1(

),~1(,~~),~1(

,
~~1,

0

0
~

~

~

~
2~

~

0

0

0

2

2

2

2202121120

2

1

2

11

2

2222121122111

2

11111

2

1

2221

1211

2

1

2221

1211

2

1






kkkωm

cccEmcEωm

SM
q

q

q

q

q

q

M

m

KK

























































































                   (3.19) 

The two natural frequencies obtained by solving the corresponding Eq. 3.5 are as follows 

./,/,/,2/})(4)(){(
ˆ

121222221111

2

122211

2

22112211

2)( mMMm  


   (3.20)  

Points :)2,1(   1212 0  due to 02  , we obtain  

,/
ˆ

,/
ˆ

;/
ˆ

,/
ˆ

22

)2,1(

22222

2)2,1(

211

)2,1(

11111

2)2,1(

1 MMmm 


                   (3.21) 

which represents the natural frequencies of small vibrations of the system about points (1,2) in the horizontal and 

vertical directions, respectively.   

Points :)3,2(   since 012  , we have 

  
22112211

2

2211

2

122211

2

2211 4)()(4)(  ,                                (3.22) 

so that the solutions 2)(ˆ 


 of Eq. 3.20 satisfy the following equation 

          
).

ˆ
,

ˆ
Max(})(){(5.0

ˆ
),

ˆ
,

ˆ
Min(})(){(5.0

ˆ

2)2,1(

2

2)2,1(

1

2

22112211

2)3,2(

2

2)2,1(

2

2)2,1(

1

2

22112211

2)3,2(

1








                                  (3.23) 

This implies that the lower natural frequency about points )3,2(  is smaller than the lower natural frequency about 

points (1,2) but the higher one about points )3,2(   is larger than the higher one about point (1).  

 

Stability: The eigenvalues 
I of the Jacobean matrix of Eq.1.17 at a point )( are given by 

,i,
ˆ

iˆ )()()()(   IIII 


                                                         (3.24) 

for natural vibrations and free vibrations, respectively. From Eq.3.12, we obtain the approximate eigenvalues  

).1,,2,1(,
ˆ

/,1
ˆ

i
ˆ

- )()()(2)()()()()(  NIEEE IIIIIIIII 
                        (3.25) 

The eigenvalues in Eq.3.25 have only negative real parts which confirm that the system is stable at point )( . The 

characteristic of eigenvalues in Eq.3.25 depends on the natural frequency )(ˆ 

I


and damping )(

IE


which are determined 

by Eq.3.4. For majority of engineering systems, there are a real natural frequency )(ˆ 

I


 and small positive damping

1)( 

IE


, so that the free vibrations of the system about point )( are stable damped vibrations. 

 

Engineering Applications 
 

Nonlinear suspension system with extreme low supporting frequency for GVT of aircrafts 

We consider Fig. 1 as a model for GVT of large full-scale aircrafts. The central mass is considered as the fuselage and 

the two beams are the two wings of aircraft. Aircrafts flying in the air are in a free-free state without any mechanical 

supports. However, in tests, the aircraft is supported on the ground so that the supporting system must affect its dynamic 

characteristics. It has demonstrated that the effect of supporter on the aircraft could be neglected if the frequency 
SA

of an assumed rigid aircraft on the supporter is less than one third of the first elastic natural frequency EA of the free-

free aircraft [1-2], i.e. 

   3/EASA                                                                                     (4.1) 

For small aircrafts, their first elastic natural frequency is high enough and there is no difficulty to design a supporting 

system satisfying Eq. 4.1. However, for very large aircrafts, the first natural frequency is lower than 1Hz. Therefore, 
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the supporting frequency for GVT should be less than 0.3 Hz. Due to a very large weight of the aircraft, the static 

stiffness of supporter have to be sufficiently large. Therefore, it is very difficult to design a supporting system with less 

than 0.3Hz supporting frequency for large aircrafts by means of normal supporting designs[1-2]. Non-linear supporting 

system discussed in this paper provides an effective approach to design this type of supporting systems.  

To support the airplane on the ground, Point (1) or (2) is chosen as the static equilibrium state of aircraft on the ground. 

Based on Eq.1.1, ,0 LY   from which we can choose a suitable height 
0Y  according to the initial length L  of the 

vertical spring, so that a negative parameter   and the vertical stiffness K are determined by 

  .,/)1( 2

0KMKgSK                                                                        (4.2) 

Because the total mass of the large airplane is huge, the stiffness of the vertical spring is very large. If there are no two 

inclined springs, the supporting frequency of the aircraft and the static compression of the vertical spring are required 

to satisfy the conditions 

./9,3//)1/( 2

EaEASA ggSK                                                 (4.3) 

A limited space of test site does not allow these conditions to be realized only using linear supporting systems. From 

Eq.3.21 and Table 1, we have the natural frequency  

.
~~

,)
~~1/()/1(

ˆ
111

)2,1(

0

)2,1(

0

2)2,1(

2   KkSkNSA 


                                       (4.4) 

Based on Eqs.1.7 and 1.11, we obtain  

),/(
~

,/)( 111

)2,1(

0101  KkKlLX                                                              (4.5) 

so that to reduce the supporting frequency in Eq. 4.4, we have to choose point (1) to design the system satisfying 

                   .0
~~

,0/1 111

)2,1(

0

2   Kkk                                                                   (4.6) 

                                                      
Fig.4. Suspension frequency affected by supporting stiffness 

This design condition is easily realized. In this design, the nonlinear stiffness term )1(

0

2 / k plays a negative stiffness 

in Eq.4.4 to reduce the supporting frequency. Theoretically, from Eq.4.6, we may choose the value of )1(

0

2 / k  near 

to 1 to realise the standard 3/EANSA  . Eq. 3.19 confirms that for the system with two dampers in Fig. 1, the damping 

factors are positive and the system is stable. Therefore, during GVT involving small vibrations of the aircraft about 

point (1), any small disturbance of the system from the equilibrium state can be damped. Fig. 4 shows the supporting 

frequency affected by stiffness values of two springs. 

 

A rigid supporting platform 

Now we consider the system shown in Fig. 1 as a model of laboratory dynamic tests. We wish that the tested beam is 

fixed on the “rigid” foundation with an extreme large supporting stiffness. We also choose stable point (1) or (2) as our 

static equilibrium state of the system to obtain an extreme high supporting frequency given in Eq. 4.4. From Eq. 4.5, it 

is necessary to choose point (2) satisfying  

.0
~~

,0/ 111

)2,1(

0

2  Kkk                                                               (4.7) 

In this design, the nonlinear stiffness term )2(

0

2 / k  plays a positive stiffness in Eq.4.4 to increase the supporting 

frequency. Theoretically, choosing a very small negative value of 
111

~~
 Kk satisfying Eq.4.7, we can obtain a sufficient 

large supporting frequency to treat the supporting foundation as “rigid”. 

 

Conclusions 

 
This paper has investigated a generalised integrated structure-nonlinear isolator interaction system consisting of a linear 

beamlike structure and a geometrical nonlinear isolator, which is able to provide extreme high or low supporting 

frequency that is not possible using passive linear isolators. The generalised system can be reduced to several simplified 
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systems reported in the available references. The governing equations describing the interaction dynamics are derived, 

based on which, equilibria with stabilities and small vibration characteristics about each equilibrium point are discussed 

for engineering designs. The coupling mechanisms of the system are revealed. Two designs, one for GVT of large 

aircrafts requiring very low supporting frequency and another for vibration tests in laboratories expecting a rigid 

foundation, are presented. The proposed coupling nonlinear system and the developed theory have established a 

fundamental basis for vibration isolation designs, and further analytical and numerical investigations on its more 

complex nonlinear behavior such as bifurcation and chaos which have not discussed in this paper, which is aimed 

mainly to coupling analysis and particular suspension designs.   
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