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Summary. There is a wide interest in understanding phenomena related to thin and ultrathin surfaces, such as wrinkling, cresting or 

folding. The classical Föppl-von Kármán plate theory is extensively used to model such phenomena. Significant in-plane strains demand 

the extension of the classical FvK model. The extended theory predicts the disappearance of wrinkling in the case of rectangular, 

clamped, stretched sheets, which was verified on thin, polyurethane sheets. In this talk we further develop the model for curved surfaces 

and present problems, where the extension to the finite tangential strains is essential to investigate the arising wrinkling pattern. By 

numerical simulation of the governing nonlinear system of PDEs, we investigate the effect of the curvature of the reference 

configuration on the emerging wrinkling pattern and demonstrate that disappearance of wrinkles takes place on curved surfaces, as well. 

 
1. Introduction 

 

Buckling of thin plates and shells has a rich and inspiring history in solid mechanics. There is a wide interest in 

wrinkling of thin films recently. In the mechanical point of view, wrinkling itself is a buckling phenomenon, however 

- opposed to the viewpoint of structural engineering, where buckling should be avoided by any means - now such 

examples are considered, where postcritical states are acceptable or even desired. 

 

For the study of wrinkling, the Föppl-von Kármán (FvK) theory of thin plates is extensively used, as the small 

thickness call for taking the effect of the out-of-plane deformations on the in-plane strain tensor into account. 

Wrinkling of a stretched rectangular sheet clamped at its two opposite edges is widely discussed in the literature [10, 

11, 12, 13]. The almost vanishing thickness of the sheet results in a counterintuitive phenomenon, namely wrinkling 

under dominant tension. Here the two restrained (fixed) edges of the rectangular domain produce a tiny compression, 

which triggers buckling. The FvK theory properly predicts the appearance of wrinkles for the rectangular sheet, 

however continuation of the equilibrium path associated with the wrinkled state shows, that the wrinkled pattern is 

preserved at any value of the applied stretch. On the contrary, extension of the FvK model to the finite in-plane strain 

regime [1] leads to the conclusion that wrinkles eventually disappear. Experiments on polyurethane sheets [2,3] 

provided evidence, that disappearance of wrinkles indeed takes place at a critical value of the applied stretch. 

 

Apparently, real-life situations are not restricted to planar problems, in many cases wrinkling occurs on curved 

surfaces, such as on tents, airbags or biological membranes. In this paper we introduce the extension of the classical 

FvK shell theory to the finite tangential strain regime. Nevertheless, dependence on the curvature tensor of the 

reference configuration is introduced into the model. Traditional shell theories treat cases, when the parameterization 

of the surface is known. For example, one can use cylindrical or polar coordinate systems [8, 15, 16], and the versions 

of the FvK model are well-known for these parameterizations. The literature of shells is rich in this scope, however, 

the generalization of these formalism to arbitrary (sufficiently smooth) surfaces is not straightforward. 

 

If one uses the finite element method for the computations, it is natural to present the mechanical model in local 

coordinates of a coordinate system attached to the n, outward pointing normal of the surface. In some previous works, 

the FvK theory was derived using local coordinates to model surfaces having very specific geometries and loads such 

as the problem of a pinched cylinder. Although in this case an eighth order PDE in the out-of plane deformation 

component can be derived, the system of governing equations have an appealing form due to the application of the 

Airy stress function. One can show, that there is no such convenient function for the theory extended to finite 

tangential strains. On the other hand, it also turns out, that our model can be formulated in an invariant form (i.e. it is 

independent of the chosen parameterization). Although here we focus on cylindrical surfaces, this feature of the 

model will trigger applications for more complicated surfaces.  

 

For the numerical work the FEniCS finite element libraries are used [4]. Here we exploit the fact, that the weak form 

of the governing equations can be applied to define the approximate discrete problem. The new model enables us to 

investigate the effect of the curvature at the reference configuration on the emerging wrinkling patterns in case of 

stretched, open cylinders. It is aimed to examine which properties of the wrinkled configuration observed on flat 

wrinkling sheets preserved on curved surfaces. 
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2. Wrinkling of a flat, rectangular domain 

 

In our previous work, we treated initially flat, stretched, rectangular films clamped on two opposite sides while the 

other two sides were left free. The length and the width of the film is denoted by L and W, respectively (Fig. 1. f)). 

 
 

Figure 1: Experimental evidence of disappearance of wrinkles for stretched rectangular sheets,  denotes the stretch 

applied between the clamped edges of the pulled sheet. The material is a 40 m thick polyurethane tape. 

 

We use an orthonormal basis {𝐠1, 𝐠2, 𝐠3}, where {𝐠1, 𝐠2} span the plane of the film in the reference configuration. 

The film is assumed to be isotropic, homogeneous and to have a constant thickness h occupying a closed Ω ∈ ℝ3 

domain. It is modeled by the deformations of its middle surface 𝐮𝐬 = [𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)]T denoting the in-plane 

displacements and 𝑤(𝑥, 𝑦) is the out-of-plane deformation. According to the FvK theory, the strain energy density is 

the sum of the membrane (Ψ𝑚) and the bending (Ψ𝑏) strain energy densities: 

Ψ = Ψ𝑚(𝐄) + Ψ𝑏(𝐤) 

where 𝐄 is the Lagrange-Green strain tensor. In the FvK theory the effect of the out-of-plane deformations on the in-

plane strain is accounted as 

𝐄 =
1

2
(∇𝐮𝑠 + ∇𝐮𝑠

T + ∇𝐮s∇𝐮s
T + ∇𝑤 ⊗ ∇𝑤). 

For small transverse displacements (and moderate curvatures at the deformed configuration)  𝐤 is the linearized 

bending strain tensor: 

𝐤 = −∇2𝑤. 

For a Saint-Venant Kirchhoff material, the strain energy densities take the following form: 

Ψ𝑚 =
𝑌ℎ

2(1 − 𝜈2)
[𝜈(tr𝐄)2 + (1 − 𝜈)𝐄 ∙ 𝐄], 

Ψ𝑏 =
𝑌ℎ3

24(1 − 𝜈2)
[𝜈(tr𝐤)2 + (1 − 𝜈)𝐤 ∙ 𝐤], 

where 𝑌 is the Young-modulus and 𝜈 is the Poisson ratio. In the classical theory, infinitesimal strains are assumed, 

therefore the term ∇𝐮s∇𝐮s
T in the strain tensor is neglected. In our problem, the surface is loaded by displacements 

imposed along two sides of its boundary 𝜕Ω𝑓 ⊂ 𝜕Ω, and the magnitude of that displacements is parameterized by a 

single parameter 𝜀. The remaining part of the boundary 𝜕Ω\𝜕Ω𝑓  is free. As there are no external loads, the total 

potential energy is simply: 

𝐼(𝐮)  = ∫ ΨdΩ
Ω
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After rescaling, the first variation of the energy yields the Euler-Lagrange equilibrium equations: 

∇ ∙ [(𝐈 + 𝐠1 ⊗ ∇𝑢 + 𝐠2 ⊗ ∇𝑣)𝐍] = 𝟎 

ℎ2Δ2𝑤 − ∇ ∙ (𝐍∇𝑤) = 0 

where N is the Second Piola-Kirchhoff stress associated with the in-plane deformations. We investigate stable 

solutions of these governing equations (which is verified by the positive definiteness of the second variation of the 

potential energy in our computations). 

 

It is well-known, that for certain aspect ratios of the rectangle and sufficiently thin films wrinkles appear due to the 

Poisson-effect and warping at a critical stretch [17]. The extension of the model to finite in-plane strains predicted 

that wrinkles disappear in a second bifurcation point regardless of the thickness [1]. The classical Föppl-von Kármán 

plate equations do not hint for such a phenomenon. It was also pointed out, that just some aspect ratios of the domain 

exhibit wrinkling. These predictions were verified experimentally by displacement controlled pull tests of 28 µm 

thick polypropylene and 40 µm thick polyurethane sheets [2,3] (Fig. 1. b)). As for the wrinkle crests, it is debated 

whether the number of wrinkles varies during the stretching process. Nonetheless, in our experiments and numerical 

simulations we only encountered cases, where the number of the wrinkles were constant. The validity of these 

characteristics of rectangular sheets is to be analyzed in the presence of curvature of the reference configuration. 

 

 

3. A model for curved reference configuration 

 

The FvK plate theory was generalized to curved cylindrical surfaces by T. von Kármán himself [8]. Expressing the 

Navier equations in curvilinear coordinates, one can derive a parameterization-free form for the infinitesimal in-plane 

strain tensor e of curved surfaces [7] as 

𝒆 =
1

2
(∇𝑋𝐮𝑠 + ∇𝑥𝐮𝑆

T) + 𝑤𝐊, 

where ∇𝑋(. ) denotes the surface gradient operator, 𝐮𝑆 and w are the tangential and normal components of the 

deformation vector u, respectively (i.e. 𝑤 = 𝐮 ∙ 𝐧 and 𝐮𝑆 = 𝐮 − 𝑤𝐧). Finally, 𝐊 = ∇𝑋𝐧 is the curvature tensor, that is 

a surface gradient of the outward pointing unit vector field n. With this in hand, for the FvK theory with finite in 

plane strains the Lagrange-Green strain can be formulated as 

𝐄 =
1

2
(∇𝑋𝐮𝑠 + ∇𝑋𝐮T + ∇𝑋𝐮𝑠∇𝑋𝐮𝑠

T + ∇𝑋𝑤 ⊗ ∇𝑋𝑤) + 𝑤𝐊. 

We keep our assumption about moderate curvatures of the wrinkles, thus the equilibrium equations are derived as 

∇𝑋 ∙ [(𝐈 + ∇𝑋𝐮𝑠)𝐍] = 𝟎, 

ℎ2ΔX
2 𝑤 − ∇𝑋 ∙ (𝐍∇𝑋𝑤) + 𝐍 ∙ 𝐊 = 0, 

where Δ𝑋(. ) denotes the surface Laplacian. Nevertheless, the model reproduces the equations of the flat case with 

𝐊 = 𝟎, and by eliminating the components of 𝐮𝑆  one can derive the eight-order ODE for w published in Kármán's 

works. 

 

4. Implementation and validation 

 

From the derivation of the model it is clear, that besides the geometry of the surface in the reference configuration, we 

also need to know its unit normal vector field. Supposing that it is not known a-priori, it can be approximated from 

the discrete representation of the surface using the coordinates of the finite element nodes. Provided we are able to 

calculate the surface gradient for arbitrary (smooth) fields given by global coordinates, there is no need to establish a 

map to define the local coordinate system on the surface.  

 

During the implementation we used our numerical continuation framework implemented in FEniCS [4]. Since the 

weak form has second order derivatives, we used a discontinuous Galerkin formulation - in specific the interior 

penalty method - and C0 continuous finite elements. One of the advantages of FEniCS is that in the case of solving 

PDEs on manifolds, it naturally computes the surface gradient lying in the tangent plane.  

 

A suitable problem to validate the model is the buckling of thin-walled cylinders. Analytical and numerical results are 

available for both axially compressed and laterally loaded problems. Furthermore, an axially stretched cylinder loaded 

by external pressure can be considered as a three-dimensional generalization of the original problem. Wrinkles appear 

due to the in-plane compression and increasing the stretch leads to the trivial unwrinkled solution gaining back 

stability. The geometry is simple and the normal vector field can be readily expressed using global coordinates. The 
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two ends of the cylinder are loaded by prescribing an axial deformation of the boundary. Assuming a constant p 

lateral pressure on the surface, the weak form of the governing equations is: 

∫ 𝐍 ∙ ∇𝑋𝜼𝑠d𝑥
Ω

− ∫ 𝐍 ∙ ∇𝑋𝐧𝜁 d𝑥
Ω

+ ℎ2 ∫ Δ𝑋𝑤𝑋𝜁 d𝑥 − ∫ {Δ𝑋𝑤}[∇𝑋𝜁]d𝑆
𝜕𝐸

− ∫ {Δ𝑋𝜁}[∇𝑋𝑤]d𝑆
𝜕𝐸

+
𝛼

ℎ𝑎𝑣𝑔

∫ {Δ𝑋𝑤}[∇𝑋𝜁]d𝑆
𝜕𝐸Ω

+ ∫ 𝐍∇𝑋𝑤 ∙ ∇𝑋𝜁 d𝑥 = ∫ 𝑝𝜁 d𝑥
ΩΩ

, 

where 𝜼𝑠, 𝜁 are the tangent and normal components of the test function 𝜼 living in the same function space as 𝐮; {}, [] 

are discontinuous Galerkin operators, 𝛼 is a penalty parameter and ℎ𝑎𝑣𝑔 is the average element size. The 

discontinuous Galerkin terms enforce the required continuity on the 𝜕𝐸 the boundary of an element [18,19].  

 

For validation of the numerical method we considered two benchmark cases.  

 
Figure 2: The two cases used for verification of the numerical scheme. 

 

Case-1: buckling of an open cylindrical shell [14]. The critical load in case if compression along the curved, hinged 

edges (while the other two, straight edges are free) is found to be 

𝜎𝑐𝑟 =
1

8.11
(1 − 0.0146

𝛽

𝜋
)

𝑌ℎ

𝑅√3(1 − 𝜐2)
, 

where 0.5𝜋 ≤ 𝛽 ≤ 𝜋 is the half of the sectorial angle. In Table 1 we compare the stress at the numerical bifurcation of 

the trivial, unbuckled state to this value. 

 

2𝛽 𝒉 𝝈𝒄𝒓 𝝈𝒄𝒓
𝒄𝒐𝒎𝒑

 40x80 mesh 

 0.02 0.00021 0.00021 

𝜋 0.05 0.00052 0.00054 

 0.1 0.00103 0.00100 

 0.02 0.00031 0.00030 

3/2𝜋 0.05 0.00075 0.00073 

 0.1 0.00155 0.00150 

 0.02 0.00037 0.00035 

9/5𝜋 0.05 0.00093 0.00085 

 0.1 0.00186 0.00155 

 

Table 1: Numerical critical loads of a cylindrical shell with W=25, L=50, Y=1, 

𝜐 = 0.30 compared to the solution from the literature 
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Case-2: buckling of a closed cylinder. Using numerical continuation in pressure 𝑝 and axial deformation 𝜀 we 

determined the bifurcation points where the initially unwrinkled surface buckles. The axial stresses can be computed 

from the strain tensor: 

𝜎 =
𝑁𝑥

ℎ
=

𝐄[1,1] + 𝜈(𝐠2 ∙ (𝐄𝐠2))

1 − 𝜈2
 

 

The analytical solution for a buckling mode determined by n, m the wave numbers circumferentially and axially, 

respectively derived by Timoshenko [6] for an axially compressed cylinder in case of 𝑝 = 0 is: 

𝜎𝑐𝑟(𝑛, 𝑚) =
𝑆1

𝑆2

𝑌

(1 − 𝜈2)
,  

where 

𝑆1 = (1 − 𝜈2)𝜆4 + 𝛼[(𝑛2 + 𝜆2)4 − (2 + 𝜈)(3 − 𝜈)𝜆4𝑛2 + 2𝜆4(1 − 𝜈2) − 𝜆2𝑛4(7 + 𝜈) + 𝜆2𝑛2(3 + 𝜈) + 𝑛4 − 2𝑛6], 

𝑆1 = 𝜆2 {(𝑛2 + 𝜆2)2 +
2

1 − 𝜈
(𝜆2 +

1 − 𝜈

2
𝑛2) [1 + 𝛼(𝑛2 + 𝜆2)2] −

2𝜈2𝜆2

1 − 𝜈

+
2𝛼

1 − 𝜈
(𝜆2 +

1 − 𝜈

2
𝑛2) [𝑛2 + (1 − 𝜈)𝜆2]} , 

𝛼 =
ℎ2

12𝑅2
, 

𝜆 =
𝑚𝑅𝜋

𝐻
, 

here 𝑅 is the radius and 𝐿 is the length of the cylinder. The minimum of the equation above for n and m determines 

the absolute critical value of the compressive stress. In Table 2 we compare the stress at the numerical bifurcation of 

the trivial, unbuckled state to this value. 

 

𝒉 𝝈𝒄𝒓 𝝈𝒄𝒓
𝒄𝒐𝒎𝒑

 35x40 mesh 𝝈𝒄𝒓
𝒄𝒐𝒎𝒑

 60x90 mesh 

0.025 0.00144 0.00188 0.00167 

0.05 0.00288 0.00333 0.00293 

0.1 0.00549 0.00061 0.00568 

 

Table 2: Numerical critical loads of the axially compressed column compared to solution of the literature for two 

different meshes and different thickness values 

 

5. Applications 

 

First, we investigate the effect of the curvature of the reference configuration on the disappearance of the wrinkled 

pattern. We considered a rectangle with dimensions L=50 and W=25 curved (and stretched) along its longer edges. 

For zero curvature the model reproduces the critical stretches associated with the appearance and disappearance of 

wrinkles of the flat rectangle. Increase in the curvature reduces the distance of the critical points in the stretch 

direction, for a given thickness of the film there is a critical value of the curvature at which the lower and upper 

critical values coincide. Above the critical value of the curvature no wrinkles appear regardless of the magnitude of 

the applied stretch (Fig. 3.). 

 

Second, we determine the stability boundary for stretched, but externally pressurized (perfect) cylindrical shells. We 

modeled a cylinder with a height L=40, R=10, and thickness ℎ = 0.1 with 𝜈 =  0.3 and 𝑌 = 1. In our computations, 

(in accordance with the results for the open cylinder in Figure 3), axially stretched cylinders without lateral load (e.g. 

𝑝 = 0) do not exhibit wrinkles. The qualitative behavior described in [5] is captured (Figure 4): the critical value of 

the axial compression is increased by the internal and decreased by the external pressure.  
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Figure 3: Disappearance of wrinkles for a stretched, open cylinder and the effect of 

the curvature of the reference state on the critical stretches. a) depicts the cylindrical 

shell stretched along its curved edges (the other two edges are free). b) critical 

stretches, where wrinkles appear/disappear for thickness h=0.01 and h=0.02. In the 

shaded area the wrinkled configuration is stable. The emerging patters for several 

cases are plotted in the c)-e) subfigures. (c: h=0.02, =0.06, 0=0.03, d: h=0.02, 

=0.10, 0=0.03, e: h=0.01, =0.08, 0=0.06, f: h=0.01, =0.12, 0=0.08) 

 
 

Figure 4: Simultaneous axial and lateral loading of a thin, cylindrical shell. a) is the 

numerically obtained stability boundary of the problem: observed, that at a fixed 

external pressure there is a critical stretch,  which makes the wrinkled pattern 

disappear. Also note the quantitative difference between the classical FvK and the 

model extended to finite strains. Wrinkled patterns around the stability boundary b) 

𝑝 = 0.00008, c) 𝑝 = 0.0009, d) 𝑝 = 0.0025
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5. Conclusions 

 

In this paper the generalization of the classical FvK shell theory for finite tangential strains is introduced. We 

computationally demonstrate, that the disappearance of wrinkles observed in case of flat, rectangular domains is 

effected by the curvature of the reference configuration and that for a given thickness there exists a critical value of 

that curvature, above which there is no wrinkling regardless of the applied stretch. We also showed, that the 

numerical scheme can be applied for curved surfaces directly. The stability boundary for a stretched and 

simultaneously externally pressurized cylindrical shell is obtained. Our model does not depend on a specific 

parameterization of the surface, thus non-conventional curved surfaces will be analyzed in the future. 
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