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Summary. We propose a set oriented numerical approach which allows to quantify parameter uncertainty in dynamical systems from
a global point of view. In this context we extend existing techniques which have been developed for the treatment of static parameter
uncertainty to the situation where the underlying parameter uncertainty is spatially dependent. The efficiency of our new algorithms is
illustrated by several numerical examples.

Introduction

Whenever one wants to analyze real-world dynamical phenomena by mathematical models, uncertainty with respect to
both initial conditions and parameter dependencies is unavoidable. Often one has to quantify to what extent parameter
uncertainties influence the numerical result of some computation in order to evaluate its significance. Obviously this type
of uncertainty quantification (UQ) has a wide range of applications both in science and engineering.
For this reason, numerical techniques for uncertainty propagation in dynamical systems play an important role. In par-
ticular, set oriented numerical methods in combination with transfer operator techniques often prove to be useful for
obtaining a statistical understanding of the dynamical behavior [2]. Recently, a set oriented numerical methodology has
been developed [3] that allows to perform uncertainty quantification for autonomous dynamical systems from a global
perspective. This methodology includes the approximation of global attractors, so-called (Q,Λ)-attractors, for dynami-
cal systems with parameter uncertainty as well as the computation of corresponding invariant measures. More precisely,
these attractors are lying within Q (in state space), and the parameter uncertainty is supported on Λ ⊂ Rp.
In this article we extend existing techniques which have been developed for the treatment of static parameter uncertainty
to the situation where the underlying parameter uncertainty is spatially dependent. In the following section we briefly
summarize the set oriented approach. Then we explain how to extend this technology to the state dependent situation.
The related algorithms have been integrated into the software package GAIO [1], and we finally illustrate the use of this
new technique by a numerical example.

Computation of (Q,Λ)-Attractors via Subdivision

We consider parameter dependent discrete dynamical systems of the form

xj+1 = f(xj , λ), j = 0, 1, . . . . (1)

Here xj ∈ Rn, f : Rn × Λ → Rn and Λ ⊂ Rp is the compact set of admissible parameter values. In order to take the
uncertainty in (1) with respect to λ into account, we consider the corresponding (set-valued) map FΛ : Rn → P(Rn),
where

FΛ(x) = f(x,Λ)

and P(Rn) denotes the power set of Rn. Then the (Q,Λ)-attractor is given by

AQ,Λ =
⋂
j≥0

F j
Λ(Q). (2)

AQ,Λ can be viewed as the set which contains all the backward invariant sets of FΛ. In particular, AQ,Λ contains all
invariant sets of (1) corresponding to particular probability distributions on Λ.
For the computation of AQ,Λ we use the following subdivision scheme. Given an initial collection C0 of boxes C ⊂ Q
with

⋃
C∈C0 C = Q, we obtain C` from C`−1 for ` = 1, 2, . . . in two steps:

1. Subdivision: Construct a refined collection Ĉ` covering the same area,⋃
C∈Ĉ`

C =
⋃

C∈C`−1

C and diam(Ĉ`) < diam(C`−1)

2. Selection: Define the new collection C` by

C` =
{
C ∈ Ĉ` : ∃Ĉ ∈ Ĉ` and ∃λ ∈ Λ s.t. f(·, λ)−1(C) ∩ Ĉ 6= ∅

}

` = 6 ` = 10

Schematic illustration

If we denote by Q` the area in state space covered by C`, that is Q` =
⋃

C∈C` C, then obviously Q` ⊂ Q`−1. Moreover
one can show that this nested sequence converges to AQ,Λ (see [3]):

lim
`→∞

Q` = AQ,Λ.

Once AQ,Λ is known the invariant measure corresponding to a specific choice of parameter uncertainty is computed via a
transfer operator approach [2]. More precisely, based on the coverings C` of AQ,Λ we use Ulam’s method to construct a
corresponding Markov chain and compute its stationary distribution as an approximation of the invariant measure.
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Extension to Spatially Dependent Parameter Uncertainty

We now explain how to extend the set oriented UQ-technology from the previous section to the situation where the
parameter uncertainty depends on the location in state space. In this case the parameter space Λ = Λ(x) will in general
depend on x and we have to compute (cf. (2))

AQ,Λ(x) =
⋂
j≥0

F j
Λ(x)(Q), (3)

where now FΛ(x) = f(x,Λ(x)). Using an adapted subdivision scheme we can again prove convergence and thus, we
can approximate both AQ,Λ(x) and invariant measures corresponding to particular types of parameter uncertainty in a
reliable way. Let us illustrate this by the following example: Consider the time-T -map f(x, λ) = ϕT (x, λ) (ϕ the flow;
x = (x1, x2)) of the van der Pol system

ẋ1 = x2

ẋ2 = λ(1− x2
1)x2 − x1.

(4)

In our computation we approximate AQ,Λ(x) for Q = [−3, 3] × [−4, 4], and we choose Λ(x) = Λ(x1) to be intervals
linearly interpolated between Λ(−3) = [0.95, 1.05] and Λ(3) = [0.05, 1.95] (e.g. Λ(0) = [0.5, 1.5]). For each λ ∈ Λ(x1),
x1 ∈ [−3, 3], the system possesses a stable periodic solution as well as an unstable equilibrium at the origin. In Figure 1
(a), (b) we show coverings of AQ,Λ(x) by choosing the time step T = 2.
Now we assume that for λ ∈ Λ(x) the parameter uncertainty is given by a Gaussian λ ∼ N (1, σ(x)2) (truncated on Λ(x)
and normalized). For x1 ∈ [−3, 3] we choose the standard variation σ(x) = σ(x1) to be linearly interpolated between
σ(−3) = 0.02 and σ(3) = 0.4. Using a transfer operator approach based on the box covering of AQ,Λ(x) – as briefly
described at the end of the previous section – we can approximate the corresponding invariant measure. In Figure 1 (c)
we show this approximation for the time step T = 2 and subdivision depth ` = 18.
Finally observe that due to our choice of Λ(x) andN (1, σ(x)2) the approximations in Figure 1 are not invariant under the
rotation by 180 degrees – as it has to be expected for the deterministic van der Pol oscillator. Rather the object spreads out
more on its left and lower left parts. However, qualitatively this makes perfectly sense since the size of the interval Λ(x1)
is increasing with x1, we have chosen T = 2, and the period of the limit cycle is approximately 6.6 for fixed λ = 1.

(a) ` = 10 (b) ` = 14 (c) ` = 18

Figure 1: (a), (b) Box coverings of the (Q,Λ(x))-attractor AQ,Λ(x) of the van der Pol system for T = 2 obtained by the subdivision
scheme after ` subdivision steps; Q = [−3, 3] × [−4, 4]. (c) Invariant measure on AQ,Λ(x) for the parameter uncertainty λ ∼
N (1, σ(x)2). The density ranges from high density (yellow) to low density (dark blue).

Conclusions

Set oriented numerical techniques yield powerful tools for the analysis of parameter uncertainty in dynamical systems.
Their advantage is that one obtains global insight by approximating the dynamical behavior in large parts of state space
without relying on long term simulations of single trajectories. On the other hand the applicability of these techniques is
currently restricted to problems with low dimensional state space.
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