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Summary. The shimmy theories based on the Keldysh assumption can be easily implemented analytically and are still quite 
efficient for the preliminary analysis of the stability of steady state rolling regimes with no slip and spin of tires. On the other hand, 
such a shimmy theory uses the non-holonomic rolling model; therefore it is inconsistent with unsteady rolling regimes 
characterized by the non-vanishing sliding and spin. The qualitatively different model accounting the dry friction effect on the 
stability of motion is constructed on the groundwork of the coupled dry friction theory. This model has shown its’ applicability to 
some practical problems of engineering design even if a wheel is assumed to be rigid. Here the improved model accounting for the 
tire deforming, the complex contact pressure distribution and the anisotropy of the dry friction coefficient in case of the combined 
kinematics is presented. 

 
The Local Model of the Anisotropic Dry Friction -Differential Formulation 

 
In general, the plane-parallel relative motion, i. e. the simultaneous sliding and spinning, of the rigid bodies with the 
finite contact spot  requires the qualitative improvement of the Amonton-Coulomb dry friction law. The aim of this 
theory consists in the differential formulation of the Coulomb law as a local model of the friction interaction in each 

point of the contact area : 
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denotes the normal contact pressure. Thus, the cohesion condition can be formulated locally in the point M S  as 
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Considering the combined kinematics, taking into account the dry friction anisotropy, we obtain the following 

formula for the tangential stress: 1
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Accounting the rolling effect on the contact pressure that accounts by-turn both sliding (this term is denoted as ) 

and spinning (this one is denoted as ), we obtain finally the local model of the anisotropic dry friction in case of the 

combined kinematics : 
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The global model of the anisotropic dry friction under combined kinematics 

 
The dynamic interaction of the slightly deformed rigid body with the rough support plane is defined by the normal 
reaction , the resultant vector of tangent forces , the anti-rolling couple N T M , and the dry friction torque M . 

These quantities are obtained by integration of the normal contact stress as well as the summary tangential stress over 

the contact area : S
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In these formulas, the resultant force  of the static contact pressure 0N 0  and it's variation  induced by the rolling 

effect can be written as follows:  
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We have the similar formulae for the anti-rolling couple where the “static” anti-rolling couple (that vanishes not in 
case of the rolling asymmetry of the body) and the “dynamic” one are defined by the formulae 
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Here the first moment vector S  and the inertia moment tensor J  of the plane area of contact  with the static 

contact pressure distribution 
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The homogeneity of the tensors lead to the vanishing as well normal reaction  as the rolling initiation moment 1N 0
M  

in the frame 1 2O   attached to the center of the figure , therefore we have the following formulae for the normal 

reaction and anti-rolling couple: 
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The resultant vector of the anisotropic dry friction under combined kinematics can be now expressed through the sum 

of the following terms: 1 0
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. The torque of the anisotropic dry friction under combined kinematics is also represented 

as a sum of four terms: 
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Let us consider the orthotropic dry friction given by the tensor: 
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frame  attached to the centroid of the contact spot ; the corresponding base vectors  and  are collinear 

to the principal directions of the tensor f . Let us consider the motion defined by the longitudinal velocity 

1 2Ox x S 2e

0 10V v e  

along the axis  of the global rest frame, the rolling angular velocity 1OX 2  ω e , and the spinning velocity  . 

Let us also consider here only circular area of contact with the radius . Under these propositions the relationships 
are approximated by smooth analytical functions. The resultant force vector can be represented as , so 

that  is the longitudinal and T  is the lateral friction force. As a result, we have the following formulae: 
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dimensionless radial coordinate is introduced. For the factors , ,  we have following formulae analogous to 
these published in [1]. 
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