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Non-smooth torus to identify domain of attraction of stable milling processes

Zoltan Dombovari∗, Jokin Munoa∗,∗∗, Rachel Kuske∗∗∗ and Gabor Stepan ∗
∗ Department of Applied Mechanics, Budapest University of Technology and Economics, Budapest,

Hungary
∗∗ Dynamics and Control, IK4-Ideko, 20870 Elgoibar, Basque Country, Spain
∗∗∗ School of Mathematics, Georgia Institute of Technology, Atlanta, USA, GA

Summary. The presented work shows a possible model dealing with the non-smooth flyover effect in milling processes. The excitation
force of the general modal model of milling process is delayed, nonlinear, time-periodic and piecewise smooth. Apart from a state
independent switch originated from the so-called radial immersion, flyover causes difficulties in connection with accurate depiction of
the anyway quasi-periodic solution. From industrial point of view, the ’size’ of this non-smooth quasi-periodic solution is essential to
predict approximately the attraction zone of the stable time-periodic stationary solution calculated using linear theories.

Introduction

Recent technological trends tend to introduce cyber physical system (CPS, [1]) solutions in machine tools to self-sense and
self-act during cutting operations. These capabilities of this envisioned enhanced machine tool [2] need to be strengthened
by more accurate modelling of the combined controlled cutting process. To ensure quality and productivity requirements
vibration must be attenuated. The regeneration, when the past motion of the tool excites the dynamics via the just cut
surface is known since the middle of the last century published by the Pioneers in [3] and in [4]. Mathematically, the
system can be represented by delay differential equations (DDEs), which generate infinite dimensional phase space.
Particularly, milling is a time periodic delayed system. By this form, the asymptotic stability of the stationary cutting
solution can be predicted as an important technological requirement in the industry. Unstable stationary cutting leads
to the onset of growing vibration limited by a threshold effect when cutting edges, often irregularly, leave and enter the
cutting state. This, generally high amplitude limiting vibration is mathematically stable. In its developed form, it is
referred as chatter vibration, while the threshold effect that limits the vibration is called as fly-over by the machine tool
industry. Apart from the purely nonlinear origin bistable region caused by smooth quasi-periodic solutions in milling
[5], tight attraction zone can be formed around the stable stationary solution due to only the non-smooth fly-over effect.
This was first experienced using time-domain solution in the motivational work in [6]. In this article island-like stability
domain (figure 1a) were presented that are enclosed by Hopf- and period doubling (PD)-kind stability boundaries. As it
was shown in that paper, this was originated from the interactions of multiple modes through modulations of the main
vibration frequency of the critical ’self-excited’ solution. However, in the presented particular example, this island was
experienced to have tight attraction zone (figure 1b) by simulation of the corresponding piecewise linear but fly-over
model. This work shows methods to predict the size of the attraction zone approximately and also to envision a general
numerical description to calculate the real threshold case as a quasi-periodic solution.

Milling model with fly-over

In order to have an industrially acceptable model multiple modes are considered with their modal coordinates q. The
model shown below includes proportionally damped modes with modal damping ratios ξk and natural angular frequencies
ωn,k characterised by real-valued mode shapes U. Spatial solution is r(t) = Uq(t) (r = col(x, y, z)), while the state is
given by qt(ϑ) = q(t+ ϑ) if ϑ ∈ [−τmax, 0]. In this case the governing equation and the regenerative force are given as

q̈(t) + [2ξkωn,k]q̇(t) + [ω2
n,k]q(t) = UᵀF(t, rt(ϑ)), F(t, rt(ϑ)) = −ap

Z∑
i=1

gi(t)T(ϕi(t))f(gi(t)hi(t, rt(ϑ))) (1)

and described completely in [5]. Possible nonliearities are originated from the specific cutting force characteristics f(h),
which carries the regeneration (delay) effect denoted symbolically by rt(ϑ) in momentary chip thickness hi(t, rt(ϑ)). This
model is able to describe milling processes with momentary positions ϕi(t) of the uniformly placed edges of the rotating
milling tool. The asymptotic stability of the time periodic stationary cutting solution qp(t) = qp(t + T ) (T = 2π/Ω)
can be determined by perturbation u(t) = q(t) − qp(t) and linearisation of (1) around qp, which results in the so-called
stability lobe diagrams (see figure 1a).

Different discontinuity effects in milling
The switching function in (1) swaps different excitation patterns causing discontinuities in second derivatives of q(t). It
can be separated to a state independent screen function related to the radial immersion gri and a state dependent fly-over
related one gfo as

gi(t) := gi(t,qt(ϑ)) = gri(ϕi(t))gfo,i(t,qt(ϑ)). (2)

Considering the state independent radial immersion with entry ϕen and exit ϕex angles is straightforward and widely
taken into account in piecewise analytical and numerical solutions with gri(ϕi(t)) = 1 if ϕen < (ϕi(t) mod 2π) <
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Figure 1: a) stability chart with an island, b) time domain simulations at γ , c) fly-over in milling according to [5].

ϕex, otherwise gri(ϕi(t)) = 0. The time and state dependent switching conditions hi(t,qt(θ)) = 0 (see figure 1c) are
causing the real problems in this framework. These are described with gfo,i(t,qt(ϑ)) = 1 if hi(t,qt(ϑ)) > 0, otherwise
gfo,i(t,qt(ϑ)) = 0. Remark that, in required stable stationary solution, when limt→∞ q(t) = qp(t) the gfo,i’s are simply
not active. Instability on stationary solution or nonlinearity induced unstable tori solutions (bistability, see [5]) ’push’ the
solution to reach gfo,i’s.

A prediction of chattering amplitude
The case presented in figure 1a contains an island with tight attraction zone tested in figure 1b. Accordingly, a method is
needed that only serves a rough answer for the size of the attraction zone, and can be used for characterization of ’linearly’
stable domain easily using the results of the asymptotic stability analysis of qp(t). Time domain based asymptotic methods
like semi-discretization (SD) is able to determine the so-called Floquet multipliers µ for the corresponding time periodic
system with TZ = T/Z. At the stability border its magnitude is simply |µcr| = 1. By using the corresponding eigenvector
scr, a sample perturbation u(θ) = µcrscr(θ) + µcrscr(θ) can be given along the stability boundary that can be used for
constructing a prototype of the quasi-periodic solution with frequencies ωZ,l = 2π/TZ l and ωq = |arg µcr + 2πq|/TZ .
These latter ones are described in the numerical solution of scr(θ) originated from the SD. As ωZ,l and ωq are not locked,
and the correct ’phase shift’ is granted by SD between qp and u, the quasi-periodic solution densely occupies the invariant
torus with qQP(t, r) = qp(t) + ru(t). If f(h) in (1) is linear, and we assume only slight change in spectrum ωq , the
switching conditions can be granted with hi(t,qQP(t, r)) = 0 for i = 1, 2, . . . , Z. Then r gives an idea what magnitude
the attraction zone can have around the region in question. Of course, in linear case, there is no nonlinearity induced
bistability as it is described in [5], but perhaps the encirclement of the island in figure 1a by three different borders creates
an only non-smooth bistability region. Apart from predicting roughly the attraction zone, this prediction can be used as a
prototype solution for unstable/stable transition for dynamic bifurcation analysis.

Numerical non-smooth boundary solver
For more accurate calculation, a transition between a nonlinear and linear description, Enders’ exponential cutting force
characteristics can be used. It can be parametrised as f(h) := fE(h, γ) = Ke(1− e−h/γ) +Kch. Here γ is the transition
parameter, while Ke, and Kc are technological parameters. By taking the limit of γ toward zero in fE(h, γ), the structure
of the non-smooth induced bistability can be unfolded over the island depicted in figure 1a. In the end, to reveal the
real structure of the dynamics ’around’ the island, the nonlinear/linear transition has to be followed by an appropriate
boundary value problem (BVP) solver. Calculating an invariant torus even for state independent discontinuity gri has to
be represented with an appropriate mesh. Starting from a critical stationary cutting solution, gfo can be reached along the
subcritical branch as in [5]. Passing this first grazing of the solution, the non-smooth condition function(s) gfo has(have) to
be represented by irregular triangularisation of the invariant torus by using proper interpolation and quadrature schemes.
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