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Summary. We consider the problem of a rigid body, subject to a unilateral constraint, in the presence of Coulomb friction. We
regularize the problem by assuming compliance (with both stiffness and damping) at the point of contact. Using a rigorous mathematical
approach, we recover impact without collision (IWC) in both the inconsistent and indeterminate Painlevé paradoxes, in the latter case
giving an exact formula for conditions that separate IWC and lift-off. We solve the problem for arbitrary values of the compliance
damping and give explicit asymptotic expressions in the limiting cases of small and large damping.

Problem

In problems with unilateral constraints in the presence of friction, the rigid body assumption can result in the governing
equations having multiple solutions (the indeterminate case) or no solutions (the inconsistent case). The classical example
of Painlevé [9], consisting of a slender rod slipping along a rough surface (see Fig. 1), is the simplest and most studied
example of these phenomena, now known collectively as Painlevé paradoxes [2, 3]. In Part I, we proved that a canard was
present in the indeterminate case. Now in Part II, we consider the inconsistent case.

Figure 1: The classical Painlevé problem.

When a system is in an inconsistent state, it can not remain there.
Lecornu [7] proposed a jump in vertical velocity to escape an incon-
sistent, horizontal velocity, state. This jump has been called impact
without collision (IWC) [4]. IWC occurs instantaneously. So it must
be incorporated into the rigid body formulation [6] by considering the
equations of motion in terms of the normal impulse, rather than time.
However, this process has been controversial [1], because it can some-
times lead to an apparent energy gain in the presence of friction. One
way to address the Painlevé paradox is to regularize the rigid body for-
malism. Mathematically, very little rigorous work has been done on
how IWC and Painlevé paradoxes can be regularized, until now.

Governing equations
In Fig. 2, we show the (θ, φ) phase plane of the rigid body motion with the special point P [4] that divides the configura-
tions of the rod into four quadrants. In this paper, we are interested in the configurations in the first (purple) and fourth
(green) quadrants.

Figure 2: The (θ, φ)-plane for the classical Painlevé
problem of Fig. 1.

We assume that there is compliance at the pointA between the rod and
the surface, when they are in contact (see Fig. 1). Following [8], we
assume that there are small excursions into y < 0. Then we take the
nonnegative normal force FN (y, w) is a piecewise smooth function of
(y, w): FN (y, w) = ε−1

[
−ε−1y − δw

]
where ε is a small parameter

related to the spring constant, δ is the damping and the operation [·] is
defined by

[f(y, w)] ≡
{

0 for y > 0
max{f(y, w), 0} for y ≤ 0,

(1)

The choice of scaling [8] ensures that the critical damping coefficient
is independent of ε. Then we find

ẋ = y, ẏ = w, ẇ = b(θ, φ) + p±(θ)ε
−1[−ε−1y − δw], (2)

θ̇ = φ, φ̇ = c±(θ)ε
−1[−ε−1y − δw], v̇ = a(θ, φ) + q±(θ)ε

−1[−ε−1y − δw].

where a(θ, φ), b(θ, φ), c±(θ), p±(θ), q±(θ) are lengthy problem-dependent functions.

Results
Theorem 1 shows that, if the rod starts in the fourth (green) quadrant of Fig. 2, it undergoes a (regularized) IWC for a
time of O(ε ln ε−1). The same theorem also gives expressions for the resulting vertical velocity of the rod in terms of the
compliance damping and initial horizontal velocity and orientation of the rod.

Theorem 1 Consider an initial condition

(y, w, θ, φ, v) = (0,O(ε), θ0, φ0, v0), v0 > 0, (3)
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within the green region of inconsistency (non-existence) where p+(θ0) < 0, b(θ0, φ0) < 0 and q+(θ0) < 0, q−(θ0) > 0,
a 6= 0. Then the forward flow of (3) under (2) returns to {(y, w, θ, φ, v)|y = 0} after a time O(ε ln ε−1) with

w = e(δ, θ0)v0 + o(1), φ = φ0 +

{
−c+(θ0)
q+(θ0)

+
Sφ(θ0)

Sw(θ0)

(
e(δ, θ0) +

p+(θ0)

q+(θ0)

)}
v0 + o(1), (4)

and θ = θ0 + o(1), v = o(1) as ε→ 0, where Sφ,w are known functions on v = 0, derived using the Filippov convention.
During this time y = O(ε), w = O(1) so that FN = O(ε−1). The function e(δ, θ0) is smooth and monotonic in δ and
has the following asymptotic expansions:

e(δ, θ0) =
p−(θ0)− p+(θ0)

q−(θ0)p+(θ0)− q+(θ0)p−(θ0)
δ−2

(
1 +O(δ−2 ln δ−1)

)
for δ � 1, (5)

e(δ, θ0) =

√
p+(θ0)(p−(θ0)− p+(θ0))
q+(θ0)(q−(θ0)− q+(θ0))

(
1−

√
Sw(θ0)

2

(
π − arctan

(√
−Sw(θ0)
p+(θ0)

))
δ +O(δ2)

)
for δ � 1. (6)

2

In Theorem 2, the rod starts in the first (purple) quadrant of Fig. 2.

Theorem 2 Consider an initial condition (y, w, θ, φ, v) = (0, εw10, θ0, φ0, v0) for w10 < w1∗ ≡ −λ−(θ0) b(θ0,φ0)
p+(θ0)

< 0,
where λ− is a known function, within the purple region of indeterminacy (non-uniqueness) where p+(θ0) < 0, b(θ0, φ0) >
0 and q+(θ0) < 0, q−(θ0) > 0, a 6= 0. Then the conclusions of Theorem 1 still hold true as ε→ 0. For w10 > w1∗ lift-off
occurs directly after a time O(ε) with w = O(ε). During this period y = O(ε2), so FN = O(1). 2

The indeterminate case described by Theorem 2 is characterised by an extreme exponential splitting in phase space. In
Fig. 3 we illustrate this for two rods (green and blue) initially (t = 0) distant by an amount of 10−3 above the compliant
surface. At around t = 0.5, impact with the compliant surface occurs. The green rod experiences IWC whereas the blue
rod lifts off directly. Fig. 3(a) and Fig. 3(b) show w and v as functions of time near t = 0.5.

Conclusions

(a) (b)
Figure 3: Dynamics of the Painlevé rod for ε = 10−3 in the indeterminate case.

We have considered the problem of a rigid
body, subject to a unilateral constraint, in the
presence of Coulomb friction. Our approach
was to regularize the problem by assuming a
compliance with stiffness and damping at the
point of contact. This leads to a slow-fast sys-
tem, where the small parameter ε is the inverse
of the square root of the stiffness. The main
achievement of this paper is to rigorously de-
rive results that have eluded others in simpler
settings. There are no existing results compa-
rable to (5) and (6) for any value of δ. Our results are presented for arbitrary values of the compliance damping and we are
able to give explicit asymptotic expressions in the limiting cases of small and large damping, all for a large class of rigid
bodies, including the case of the classical Painlevé example in Fig. 1. We have been able to derive an explicit connection
between the initial horizontal velocity of the body and its lift-off vertical velocity, for arbitrary values of the compliance
damping, as a function of the initial orientation of the body. Our results can be generalised to a general class of rigid body
and a general class of normal reaction [5].
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