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Abstract: This paper demonstrates the effects that vibratory forces have on several vibrating objects.  
The forces that result from vibration may cause a change in position in some components of certain 
systems. The oldest known example is Huygen’s clock pendulums. The authors have studied some 
systems that operate in such a way that they are able to compensate for the dynamic forces, change the 
position of equilibrium, alter it back and forth between static and unstable, and decrease the coefficient 
of friction. By controlling the components’ vibration, it is possible to obtain a desired trajectory of 
motion of small elements. 
 

1. Introduction 
 

Vibratory forces are found in many systems in which some element has periodic motion. 
They are also found in everyday life whether we notice them or not, such as human locomotion.  In 
general, animal locomotion results from the periodic movement of limbs. Legged mammals change 
position by moving their appendages; limbs work as pendulums and generate propulsion force. 
Terrestrial locomotion can take the form of walking, running, hopping, dragging, or crawling. 

Limbless creatures operate under a different principle of locomotion, using their body to 
generate propulsive force - e.g. snakes and earthworms drag themselves across the ground by 
alternately scrunching up parts of their body and relaxing other parts. Pythons and boa constrictors 
have large scales on their underside which  push backwards and downwards rhythmically in their 
rectilinear motion. Some animals (e.g. earthworms) burrow through solids such as soil using 
peristalsis. Undulation allows fish and other marine animals to generate thrust and some use fins to 
control direction. Very small water animals, e.g. paramecium, use their cilia to move. Volant 
animals must generate lift to ascend and remain airborne. One way to achieve this is by flapping 
wings, their periodic motion through the air generating an upward lift force. Fig. 1 presents some 
examples of locomotion as a result of vibratory forces. 
 

a)  b)  c)  

d)  e)  
 

Fig.1. Examples of (a) walking, (b) running, (c) swimming, (d) paramecium and (e) humming bird 
 

Forms of animal locomotion have inspired the design of several robots,  several of which have been constructed 
successfully. In practice, such robots have more restrictions and limitations than do animals, depending on their 
intended use [1].  
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Fig.2. Vibratory robot with two disc motors 
 

Synchronization is a common phenomenon in physical and biological systems [2, 3]. For example, swarms of 
fireflies gather in the evening at the same tree and start to flash  chaotically, but after a while, they begin to flash in 
synchrony.  Another example is the synchronization of clapping in audiences. Synchronization is the process in which 
two or more systems interact with each other and come to move together. It is commonly observed to occur between 
oscillators. The small motion of the base couples the pendulums, causing synchronization. One of the earliest 
phenomena was described by C. Huygens – the behavior of two pendulum clocks which were slightly “out of sync” 
mounted next to each other on a wooden board [4]. After a brief period, they began to move in synchrony, swinging in 
opposite directions. The vibrations of the common base generated by the pendulums are transmitted between them, 
generating vibratory forces which couple their behavior. Figure 1 demonstrates the pendulums moving synchronously 
and asynchronously. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Pendulum clocks and their frequencies of motion 
 

Fig. 4. Transmission of power between two rotors 
 
Z. Engel demonstrated a transmission of the power between two rotors [5, 6]. Two unbalanced rotors on the 

same base started to move in synchrony with each other if the initial difference between their speeds was minor. It was 
possible to generate electricity from one rotor while the other was driven by an electric motor. 
 

 
This article will discuss some examples in which vibratory forces play an important role and the ways they change 

the properties of some dynamic systems. 
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1. Pendulum with pivot vibration [Ref. 7] 

 
Pivot O of the pendulum vibrates in harmonic way  z=zosin(Ωt) in the direction defined by angle β – Fig.5. The Mathieu 
equation defines the angular vibration of the pendulum if the pivot vibrates with frequency Ω. The natural frequency of 

the pendulum without pivot vibration is defined as Bmgeo  , where e defines the position of the mass center and 

B is the mass moment of inertia.  
The vibration of the pendulum is as follows: 
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where B is mass moment of inertia of the pendulum, m is its mass,  
OC=e is the position of the mass center, A, Ω, β are the parameters of the pivot  
vibration, and two moments  sin)( mgeF  , and 

tmAetP  sin)sin(),( 2  .     (2) 

Moment F(ψ) generates vibration α(t) with low frequency and  
moment P(ψ,Ω) generates vibration θ(Ωt) with high frequency. 

)()(),( ttt o        (3) 

where αo is the new position of equilibrium.  
Fig.5. Pendulum with pivot vibration 

The component vibrations are defined as follows: 

  )()()(   ooo PFFcB  ,     (4) 

  ),,( tPcB   .        (5) 

Moment P(α, θ, Ω) can be put in Taylor series with respect θ and neglect the terms of higher order of θ  
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The small vibration with respect to the position of equilibrium is defined as 

tmeAkcB o  sin)sin(2  .     (8) 

The solution of Eq. (8) has a form 
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where c is damping, )sin()cos(2 tmeAk o   . 

For Ω>>ωo, where ωo the natural frequency, and small damping the amplitude of vibration o  and  phase angle  
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The total moment acting on the pendulum from low and high frequency vibrations

 )222sin(25.0)sin(),(),(),( 2   oooooo AmemgePFM . (12) 

The low vibration (t) is a function of the moment from the gravitational force and vibratory moment P . The equation 
of vibration α(t) near the position of the equilibrium αo takes a form 

  ))(2cos5.0cos( 2
oooo AgmecB   

                   )22sin(25.0)sin( 2   ooo Amemge .     (13) 

Eq. 12 defines the position of dynamic equilibrium and the Eq. 13 the natural frequency of vibration near this position 

 0)22sin(25.sin)( 2   oooo AmemegM .     (14)

oooo BgAmeg /))(2cos)/(5.0(cos 2*   ,     (15) 

Frequency ω* depends on amplitude A and frequency Ω.  
From Eqs. 10 - 14 it can be concluded that for β=0, the position of equilibrium may be αo=0o or π depending on 
frequency Ω and the amplitude of vibration θo near the upper position of equilibrium equals zero. Fig.6 presents the 
change of natural frequency and the form of vibration α(t)+θ(t). 
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Fig.6. Change of natural frequency of the pendulum for lower position and  
vibration ψ(t) of the pendulum for upper position if A= 16 mm, Ω=150 rad/s,  =30o 

 
The vibration of the pendulum has two components; (t) with frequency ω* and the fast vibration θ(t) with frequency 
Ω - Fig. 6. 
 

The position of equilibrium αo is stable if 0

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 o
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      (16) 

 
 
 
 
 
 
 
 
 
 
 

Fig.7. Total moment M (1) and vibratory moment P (3) 
if Ω=150 (a), 200 rad/s (b) and β=0, αo= π 

 
Fig.7 shows that the position of equilibrium is stable – the derivative of the resultant moment is negative. 
 
 As demonstrated, via the action of the vibration, the pendulum can change its position of equilibrium; the 
upper position which is statically unstable can be changed to dynamically stable and vice versa. 
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2. Increasing the speed of an unbalanced rotor.  
 
The rotor with high imbalance has some properties which are more easily explained if the vibratory moment is defined. 
The imbalance mR is driven by a DC motor whose characteristic is pTT om   - Fig.8, 

where To, p are constants of the motor and   is its spin velocity.  

The vibration of mass M and the angular motion of the imbalance are governed by the following equations: 

 sincos2  memekxxcxM  ,       (17) 

)(sin  vmm TTxmeTB   . 

When the imbalance spins with an angular velocity ω, then its angle of rotation is defined as 
    t    . 

The solution of Eq. 17 has a form 
  )sin( xx tax   .        (18) 

where ax is an amplitude of vibration and φ is a shift angle. 
 
The vibratory moment 
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1 2
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T     .      (19) 

The vibratory moment always acts as a braking moment in the opposite direction of the rotor rotation, and its maximum 
occurs at the resonance velocity. The steady motion of the imbalance occurs at the angular velocity ω1 when  
 

0)()( 11   vm TT , and it is dynamically stable if  0
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    (20) 

 
 
          
 
 
 
 
 
 
 
 

 
Fig.8. Unbalanced rotor and its dynamic characteristics 

 

If the vibratory moment is larger than the torque of the motor, the rotor cannot move to over-critical range of velocity. 
For the highest characteristic of the motor (Fig. 8) increasing the motor velocity is not an issue, except with a rapid 
change of the rotor angular velocity ω at the resonance. For other characteristics (Tm)max<(Tv)max there is an equilibrium 
velocity close to the natural frequency and the system cannot move to higher velocities. 
When the motor is switched off, the velocity decreases rapidly as a result of braking vibratory moment - Fig. 9. 
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Fig. 9. Behaviour of the rotor without the moment Tm  
a) as result of viscous damping 
b) as result of vibratory moment 

 
 

 
3. Self-balancing of the rotor [Ref. 8 - 10] 

 
The rotor with 1 DOF with a static imbalance Me and N free-moving balls inside is shown in Fig.3. The rotor is 
elastically supported in direction x.  

 
a) b) 

Fig.10. Unbalanced rotor (a) and the final position of the balls (b)  
 
The vibration of the rotor is defined by 

 ))sin()cos()(()cos(
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
 ,  (21) 

and the behavior of the ball is governed by 
 

itiiii nRFnRtxmmR    )sin(      (22) 

where M, R, c, k are the parameters of the rotor, m, R, N are the parameters of the balls. 
 
The solution of Eq. (21) can be approximated as 

  )cos()cos()(
1

  


i
N

i
io tAtAtx .     (23) 

The inertia force acting on the ith ball  )sin( iti txmF         (24) 

 
From the author’s previous works, it is known that the motion depends on the average magnitude of 
inertia force Fti 

   
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tii dttF
T

F )(
1

.       (25) 

where T is the period of vibration T=2π/ω. 
 
By assuming the vibration of the rotor in form eq. (23), the vibration force acting on the ith free 
elements is 

  ])sin()sin([5.0
1

2 



N

j
jijioi aamF  .    (26) 

The balls change their position with respect to the imbalance under the action of the vibratory force Fi.  
When the balls are in a position opposite the imbalance, the rotor vibrations and the vibratory force decrease - Fig.10b. 
The change of the vibratory force with the change of the position of one ball is shown in Fig. 11. We can see that the 

ball at αf=π is in a stable equilibrium position for angular velocity of the rotor ω>ωo  -  F(π)=0 and 0
d

dF
. The balls 

can compensate for the rotor imbalance only for over-critical speed of the rotor. 
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Fig.11. Vibratory force as a function of the ball position 
for ω>ωo and ω<ωo  

 
When the rotor has two degrees of freedom then the inertial force has a form 
 

   )]cos()sin([ iiti tytxmF    ,     (27) 

 
and the vibratory force can be twice as high as for the rotor with 1DOF. For the rotor with static and 
dynamic imbalance (Fig.12) the balls should be located on two planes to compensate for these two 
imbalances. The vibratory force acting on the ball depends on the linear and angular vibrations of the 
rotor. 

 
Fig. 12. Balancing in two planes 

 
 

4. Synchronous eliminator of vibrations [Ref. 11 - 12] 
 

 The object has a free-moving element (ball or pendulum), which via the action of vibratory forces, can move 
in synchrony with the excitation and occupy the positions opposite the excitation. The principle of the synchronous 
eliminator of vibration [11] is very similar to the self-balancing system if the angular velocity ω of the drum with the 
balls is equal to the excitation frequency.  
 
 
 

 
 

 
 
 
 
 
 a) 
 
 
 

Fig. 13. Synchronous eliminator of vibration (a) and allowable frequency difference (b) Δω if c=0.05 kg/s. 
  

If ω=Ω and there is only viscous resistance to motion, then it is possible to completely eliminate the object’s vibrations. 
When ω≠Ω and small Δω=Ω-ω, then some residual vibrations will occur. The maximum allowable difference Δω 
depends on the ratio Ω/ωo as shown in Fig. 13b. 
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If the object has more degrees of freedom, there should be more free-moving elements on some planes to be 
able compensate for any excitation; forces and moments [12]. Fig. 14 shows a diagram of the object moving on a plane. 

 
Fig. 14. Object with synchronous eliminators of vibrations 

 
Via the action of the vibratory forces, the free elements organize themselves to compensate for the excitation. 
 

5. Friction with vibration of the base and vibratory transport [Ref. 7, 13] 
 

A block with a mass m is situated on the plane that vibrates in harmonic way in xo(t), yo(t) and zo(t) directions 
– Fig.15. The motion of the block is the result of force P and three inertial forces: 

tamtI xx  sin)( 2 ,    )sin()( 2
yyy tamtI   ,    )sin()( 2

zzz tamtI   .    (29) 

where ω is the frequency and ax, ay, az, ψy, ψz are the amplitudes and shift angles of the vibrations. 
The friction force is defined as 

For slipping velocity v=0    and     NFIIP oyx  22)( ,    xx IPF  ,    yy IF  .  (31) 

where the normal reaction is 0 yImgN . 

If  v≠0  then    vvFF xox / ,     vvFF yoy / ,      (32) 

where v, vx, vx, are the slipping velocity and its components. 
 
 

 
 
 
 
 
 
 
 
 
 

Fig.15. Block on vibrating plane 
 
The behavior of the block on the plane is governed by 
 

xx FIPxm  ,  yy FIym  .     (33) 
If the plane does not vibrate in a vertical direction, then No=mg and the minimum force P to move the object  

is    xyo IINP  22
min .  

If the plane also vibrates in a vertical direction, the normal reaction No is replaced by the dynamic normal force N.  

If the coefficient of friction is determined as oNP /min , then it decreases as the amplitude and frequency 

of the plane vibration increase. The coefficient of friction defined this way is called the equivalent coefficient of friction. 
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Fig. 12 shows how force Pmin and the equivalent coefficient of friction change with the frequency, and how the object 
can move on the vibrating plane if Pmin<P<No.  

 

a) b) c)  

 
Fig. 15. Minimum force, equivalent coefficient of friction and the motion of the block (50 Hz)  

for m=0.5 kg, μo=0.5, ax=ay=10 μm 
 
As shown, the vibratory forces can “decrease” the force needed to move the object. When the equivalent coefficient of 
friction becomes negative, the object moves without any force P – it is vibratory transport. 

 
6. Conclusions 

 
Via vibratory forces, a system can change its properties, the position of equilibrium may move, and the static position 
of equilibrium may change to unstable or from unstable to static.  
Because of vibratory forces, systems are able to detect the vibration and then organize themselves in such a way to 
compensate for the excitation and eliminate the vibration. These are the examples of self-organizing systems. 
As it was shown, the force necessary to overcome the friction force and displace the object can be much smaller than 
is normally observed for static friction. The dynamic coefficient of friction (equivalent coefficient of friction) is much 
smaller than the static coefficient. For high frequency or amplitude, the equivalent coefficient of friction becomes 
negative, and as a consequence, the motion of the element of the vibrating surface is known as vibratory transport.  
Controlling the components of vibration of the plane, it is possible to obtain any trajectory of motion and also the 
locomotion velocity. Locomotion of very small robots is a result of vibrations generated by different actuators. 
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