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Summary. The movement of a small stiff spherical particle in the standing wave pressure field in fluid is studied taking into consider-
ation the Basset force. The integro-differential equationis solved using the Krylov-Bogolyubov averaging techniqueand the efficient
numerical scheme for the solution of the obtained averaged integro-differential equation is proposed. The transitionfrom "fast" vari-
ables to "slow" averaged coordinates provided the averagedparticle trajectory and its qualitative behavior. It is shown that the Basset
force may play serious role in focusing small particles by ultrasound and even may change their focusing position from standing wave
nodes to antinodes. The obtained results are investigated analytically and numerically.

Introduction

The problem of particle dynamics in an acoustic wave was firstly investigated in [1]. The averaged forces acting on a
particle were attributed as radiation forces which appearance was caused by acoustic wave scattering on a particle and
this approach was widely used in many subsequent works. The results presented in these works included the particle
compressibility effect and describe well the particle motion in the inviscid fluid. This approach is valid for small viscosity
fluids and rather big particles (compared with viscosity penetration depth during an acoustic wave oscillation period).
As the most promising applications of the acoustophoresis are biological ones(see for many examples [2]) the size of
manipulated objects may be of the order of microns or smaller. The viscous effects may play significant role in this case.
The radiation force approach is improved and extended to practically all viscosity coefficient values in the ingenious work
[3] by using the Prandtl-Schlichting boundary-layer theory.
In this work the approach of local forces acting on a particleis used. The particle is considered to be subjected to
gravitational, inertial and viscous forces and the interaction force between the particle and the acoustic wave is calculated
as the force acting on particle in the non-stationary fluid flow around the particle. The Maxey-Riley equation [4] is used
and the gravitational and Saffman forces are neglected because of their smallness compared to the other forces. It is shown
that the Basset force which corresponds to the nonstationarity of the flow may play significant role in the particle motion
and even change its focusing position from standing wave nodes to antinodes.

Particle movement equations

The Basset-Boussinesq-Oseen equation (BBO equation) is used to describe the motion of a small spherical particle in
unsteady flow with velocity fieldv(x, t) at low Reynolds numbers
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∂x ,
FStokes = −6πµa(ẋ− v),
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Hereρp andρ stand for particle and fluid densities,a stands for particle radius,µ stands for fluid viscosity which we
consider not to depend on density. Byw andW are denoted fluid acceleration along fluid and along the particle trajectory.
The Basset force is used in the form proposed by [5] which contains the corrections for nonzero initial particle relative
velocity with the fluid. The inertial force is used in the Maxey-Riley form [4].
The last two forces are neglected because of their smallnessand (1) is divided by(2/3)πa3

(ρ+ 2ρp)ẍ = 2ρw + ρW − 9µ
a2

(

dx
dt − v

)

+ FB,

FB = − 9
√
ρµ

a

(

∫ t

t′=0

(

d2x
dt′2 −W (t′)

)

dt′√
π(t−t′)
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The dimensionless acoustic wave amplitude is denoted byb ≪ 1. It is defined as the ratio of maximal fluid velocity in the
wave to the sound speed in the fluid. The dimensionless variablesq = (ω/c)x, τ = ωt and the dimensionless viscosity
parameterK = 3µ

ωρa2b ∼ 1 are introduced,ω stands for the wave angular frequency. The asymptotic averaged equation
for b → 0 is obtained using the Krylov-Bogoliubov averaging technique [6] as described in [7]. The solution comprises
the following steps:



ENOC 2017, June 25-30, 2017, Budapest, Hungary

Figure 1: The asymptotic and the exact numerical solutions of the integro-differential BBO equation (light solid line and dashed line)
and the numerical solution of the same equation without the Basset force (dotted line). The inset shows the magnified partof the
dependence.τ1 = 3ρbτ/(2ρp + ρ) stands for the "slow" dimensionless time. Part a) illustrates the heavy particle behavior and b)
illustrates a light particle for which the Basset force consideration changes the particle focus point. On both partsK = 3 andh = 0.05.

1. The fast motion of particle in standing wave is marked out by a certain variable change.
2. The system of equations is transformed to standard form for the Krylov-Bogolyubov averaging technique application.
3. The system averaging procedure is applied and the new variables depending only on "slow" time (τ1 = 3ρbτ/(2ρp+ρ))
are introduced.
4. The obtained averaged integro-differential equation issolved numerically and compared with the exact numerical
solution of the initial system (2).
The initial and the averaged equations were modeled using a 5-point-grid numerical scheme for the Basset integral cal-
culation of the third order of precision. As the initial conditions are not defined very well a step variation technique was
used in order to make much smaller step at the beginning of thetime grid.

Results and conclusion

In the Figure 1.a) the trajectory of heavy particleρp/ρ = 1.5 is modeled forb = 16/3 · 10−4. The trajectory for small
b practically coincides with the asymptotic solution atb → 0. The initial equation simulation took about eight hours of
one core CPU time and the averaged integro-differential equation simulation took only 170 milliseconds using the same
numerical scheme. The ability to compare the results for these two approaches up to such a big time (τmax = 60000,
1.2M steps) shows the advantage of our scheme over the one used in [7] where only the small part of the particle trajectory
was calculated.
In the Figure 1.b) is illustrated one of the most interestingresults of the Basset force inclusion. Here the Basset force
changes the particle equilibrium point from pressure nodesto antinodes. The trajectory of light particleρp/ρ = 0.6 is
modeled forb ≈ 1.17 · 10−3. The averaged solution describes rather well the solution of the initial equation althoughb
value may be a little bit too high value for the exact coincidence. The calculations of the initial equation here took about
six hours compared with 50 ms for the averaged equation solution.
Considering the obtained results one may note that the cavitation threshold for atmospheric pressure is aroundb ≈ 4.4 ·
10−5 and the typical small parameterb values are much less than used. One may conclude that the obtained asymptotics
will describe the particle motion even better at smallerb and the proposed averaging procedure will be the only possibility
to obtain the results in a reasonable computation time (as the time increases proportional tob−2).
The proposed technique was used for modeling particle behavior at different particle densities and fluid viscosities. The
focusing point changes atρp/rho = 1. The proposed theory is applicable for the small particles described by the low
Reynolds numbers such as the biological particles in blood subjected to the low intensity ultrasound. The proposed results
may be useful in the acoustophoresis method in medicine.
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