
 

ENOC 2017, June 25 – 30, 2017, Budapest, Hungary 
 

 

Optimization Criterions of a Multi-Time-Delay Controlled Isolation System with 

Asymmetrical Nonlinearity 

 

 Xiuting Sun 
*
, Shu Zhang

**
, Jian Xu 

**
, Huijie Yu 

*
, Shenglong Wang

*
, Yao Yan

***
 

*
 School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. 

China 
 **

 School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, P.R. China 
*** 

School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, 

Chengdu, P.R. China 
  
Summary. Based on the analysis of multiple nonlinear vibration properties, optimization criterions for different types of excitations and 
structural nonlinearities are proposed for an isolation platform with loading. In order to improve the isolation effectiveness in a wide 
frequency band, feedback control considering inherent and adjustable time delays is introduced into this system. The main results show 
that without changing the High-Static-Low-Frequency advantage brought by the nonlinear isolation structure, the isolation effectiveness 
could be optimized in a wide frequency band for the optimization of structure and time-delayed control. 

 
The nonlinear isolation system with time-delayed feedback control 

Fig. 1 is the model of a time-delayed control nonlinear vibration isolation system. Normally, the negative-stiffness 

component could be realized by three structures, which are per-compression springs [1-2], buckling beams [3] and 

pre-compression Scissor-Like Structures (SLSs) [4]. In this paper, considering the stability of springs and the 

potential application in multi-direction isolation, the SLSs are utilized for the realization of nonlinear stiffness 
property as Fig. 1 (b).  

 
Fig. 1 Model of a controlled isolation platform with loading M2 and time-delayed active control. 

We assume that the control signal contains both the displacement and velocity information as shown in Fig. 1 (c). The 

inherent time delay 1 is considered for the signal computation and transformation in the control loop, and time delay 

2 is introduced artificially into the control as an adjustable control parameter, thus the control is written as 

          1 1 2 1 2 1 2 1
ˆ ˆ ˆ ˆ, .μ τu g x t x t g x t x t                     (1) 

When the adjustable time delay is as 2=0, the feedback control has no effect on the dynamics since u=0, and thus the 

effect of the time delay 2 and its control mechanism could be highlighted. By Lagrange principle, the dynamical 
model of the isolation platform with multi-time-delayed control is as 

          
3 1 3 11 2 1 2 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ+ + ,M M x K x cx M M z g x x g x x M g             (2) 

where 𝐾(𝑥) is the nonlinear stiffness function. Because the modeling is around the zero equilibrium, utilizing the 

Taylor series expansion at 𝑥 = 0, it can be obtained that 

        2 2 2 4 2 2 4 6 2 2 2 2 3 6 8

2 2 2 2 1 2 0 1 2 2 0 1 1 2 2
ˆ ˆ ˆ ˆ ˆ2 2 3 .v h s v h s h hK x k k l n l k x k l l n l x k l l x n l k l l n l x n l            (3) 

Dynamic model and solutions of steady states 

The expectation of time-delayed control is not only to broaden the isolation effective band from ultra-low frequency 

but also eliminate the bifurcation and instability. Utilizing the method of multiple scales, the normal form of the 

solution is as 
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In order to evaluate the optimization effect of control parameters on isolation effectiveness, the vibration 

displacement transmissibility Td is defined as 

    
2

0 0 0 0cos cos cos 1 2 cos .dT x z a t z t z t a z a z            (5) 

where 𝑧̃0 is the amplitude of excitation, a the amplitude of relative motion and cos the phase. 
 

Nonlinear vibration properties and optimization of control parameters 
Optimization criterion for impact excitation 
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In order to damping the free vibration for impact excitation quickly, the optimization criterion for impact excitation is 

proposed as 

    
21 min .kI d da    (6) 

The optimization criterion could choose the optimum time delay k2 for fastest dissipation of free vibration. Fig. 2 

shows the optimal values of time delay k2 and the comparison of free vibration for the optimal parameter and other 

values for different control coefficient 𝑔̃2 as increasing the inherent time delay k1.  

 
Fig. 2 Optimum values of time delay k2 for impact excitation and the relevant time series of free vibration. 

The vibration response for the optimum time delay and other values are compared in Figs. 2 (b)-(d) and the vibration 

could be damped fastest for the optimum time delay. Therefore, the vibration time series verify the optimization 

criterion for impact excitation proposed as Eq. (6). 

Optimization criterion for harmonic excitation 
For hard-spring nonlinearity, the vibration amplitude could jump to a large value at 1, from where it regards that the 

isolation is effective, while the frequency band for multi-steady states also begins from 1. Therefore, for hard-spring 

property, based on the definitions of effective isolation frequency band as [1, ) and the multi-steady states band as 

[1, 2], the optimization criterion is proposed as 

        2 2 1 3 2 2 1min & min .k kI I        (7) 

Fig. 3 shows the optimum time delay for different displacement feedback control gain coefficient 𝑔̃2 and the 

comparison of amplitude-frequency curves among the optimum time delay and other values.  

 
Fig. 3 Optimal values of adjustable time delay k2 and the relevant amplitude-frequency curves. 

From Fig. 3, it reveals that for choosing the optimum time delay (corresponding to the amplitude-frequency curve in 
Red Dashed Lines), the frequency at jumping-up point is smallest, and thus the effective isolation frequency band is 

largest. Also, the optimum time delay reduces the multi-steady states band to zero. The comparison demonstrates the 

effective isolation frequency band, multi-steady states phenomenon and isolation effectiveness in high frequency 

band are optimized simultaneously.  

 

Conclusions 
 

This paper provides the design, optimization and application of nonlinear isolation system with feedback control 

including adjustable time delay and inherent time delay. Based on multiple nonlinear vibration properties, the 

optimization criterions are proposed and the appropriate values of adjustable control parameters for different types of 

excitations and structural nonlinearities are determined. The optimal values of control parameters could optimize the 

isolation effectiveness and satisfy multiple requirements without changing the structural nonlinearity in practices.  
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