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Summary. Torsional vibrations occur commonly in power transmission systems and components. Often these vibrations are subject to 

transient frequency response, which are nevertheless dominated by fixed multiples of the main shaft speed (such as engine order 

vibrations). In this paper, a lightweight electromagnetic oscillator is proposed as an energy harvester from these torsional 

vibrations. A nonlinear spring is applied to tune the response of the oscillator to parametric excitations. Numerical analysis is 

carried out to predict output power of the harvester over a wide range of frequencies. The dynamics of the system offers the 

potential of increasing the effective operation band of the harvester, employing parametric resonance. 

 

Introduction 
Harvesting energy from mechanical vibrations is an emerging field pointing to the use of lightweight oscillatory 

attachments in order to capture energy from a system’s secondary vibratory modes [1]. One example is the resident 

vibration on transmission input shaft, flywheel and the crankshaft in the form of higher harmonics of the engine speed 

(commonly referred to as engne order vibrations [2]). A major drawback in the current state-of-the-art is the 

requirement for precise tuning of any vibration absorbing systems such as dual mass flywheel [3] or indeed any   

linear harvesting device. Multi-modal harvesters, with incorporated non-linearity are efficient tunable oscillators over 

an extended range of response frequencies. Nonlinear bi-stable oscillators have recently attracted significant attention, 

mostly due to the possibility of inter-well oscillations [4]. However, this mode of oscillations requires a minimum 

input energy. 

One of the most efficient ways of pumping energy into a system is to subject it to parametric resonance. It is known 

that linear parametrically-excited systems may experience instability when the excitation frequency is close to twice 

the natural frequency [5]. Nevertheless, the addition of nonlinear stiffness elements can confine unstable solutions to 

limit cycles [5]. Hitherto, Parametric vibrations have been considered as amplification mechanisms for regular 

externally excited systems [6]. This paper investigates the response of an energy harvester to parametric external 

excitation, focusing primarily on rotational vibratory systems. The aim is to demonstrate that parametric vibrations 

may allow for dramatically broader frequency band-width in efficient vibration energy harvesting. 

  

System equations 
The dynamics of a mechanical oscillator undergoing external and parametric excitation can be described as:  

 

 
�̈� + 2𝜁𝜔𝑛�̇� + (𝜔𝑛

2 − 𝛺𝑠ℎ
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𝐿𝐼̇ + (𝑅𝑖 + 𝑅𝐿)𝐼 + 𝛩�̇� = 0 
(1) 

 

where 𝑥 is the oscillator’s radial displacement, 𝜁 is the damping ratio, 𝜔𝑛 = √𝑘/𝑚 is the linearised system natural 

frequency, 𝛽 = 𝑘3/𝑚 is the nonlinear stiffness coefficient, 𝑚 is the mass of the oscillator, 𝛺𝑠ℎ is the external 

excitation frequency, representing the speed of a shaft and 𝑔 is the gravitational acceleration. The magnetic properties 

of the oscillator establish a coupling with an adjacent electric circuit comprising a coil and a resistive load. For the 

electric circuit, 𝐼 denotes the current, 𝐿 the coil’s inductance, 𝑅𝑖 the coil’s internal resistance, 𝑅𝐿 the resistive load and 

𝛩 the electromagnetic coupling between the coil and an oscillating magnet. Considering slow variations of the 

excitation frequency so that 𝛺𝑠ℎ = 𝛺(1 + 𝛼 cos 𝜔𝑡) with 𝑎 ≪ 1, Eq. (1) becomes: 
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Eq. (2) shows that the system undergoes a combination of external and parametric excitations. Furthermore, the 

linearised frequency varies with 𝛺, causing the system to bifurcate from a mono-stable to a bi-stable response when 

𝛺 = 𝜔𝑛. This becomes evident if one examines the potential energy of the conservative system. In fact, Fig. (1) 

shows the normalized potential energy of the system with 𝜔𝑛 = 87.23 rad/s and two values for 𝛺 = 62.8 rad/s and 

𝛺 = 439.82 rad/s respectively. It is clear that Eq. (2) incorporates both mono- and bi-stable responses, controlled by 

the relation between the main shaft speed 𝛺 and the linear frequency 𝜔𝑛. 

As 𝛺 increases, it would dominate the linear part of the stiffness characteristics, so that 𝜔𝑛 may be neglected. In this 

case, the response of the system to parametric excitation would depend on the ratio of the parametric vibration 

frequency over the external applied frequency, i.e. 𝜔/𝛺. However, in most rotational mechanisms torsional vibrations 

attain a frequency which is a multiple of the main shaft speed as a result of the design of the system (e.g. x2, x4, x8). 

Hence, the frequency ratio of the system in Eq. (2) approaches a fixed value, as 𝛺 increases. (see Fig (1b)). Therefore, 

the system design can be easily adjusted so that it resonates parametrically for a broad range of frequencies. 
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(a)                                                                                     (b) 

Fig 1. (a) Normalized potential energy of the conservative system corresponding to Eq. (2). Two values of 𝛺 are shown that result 

to single-well and double-well structure; (b) Frequency of torsional vibrations over the system’s linear frequency. As the shaft 

speed increases, it approaches a fixed value of 1.5. 

 

Numerical Results 
The response of the system described by Eq. (2) is computed numerically for a case study in order to demonstrate the 

resonating response and the consequent broadness of the frequency range of the efficient operation of a harvester. 

Two coils, sufficiently far from each other, are considered so that the magnet is coupled only to one coil at any given 

time. Fig. (2a) shows the velocity variation of the oscillator, �̇�, with the shaft speed. Two types of response are 

observed, corresponding to the external part of the excitation, resulting in a vibrating response of the same frequency 

(1:1, dashed line), and a parametric excitation (1.5:1, solid line). It is clear that the former is confined to a narrow 

band, when compared with the latter, which initiates shortly after bifurcation to a bi-stable dynamic response. The 

frequency ratio (see Fig. (1b)) rapidly approaches the primary parametric resonance (around 𝜔/𝛺 = 2). This results in 

sustained vibrations over the remaining frequency range. Consequently, a broadband vibration energy harvesting, is 

shown in Fig (2b). 

  
(a)                                                                                     (b) 

Fig 2. (a) Numerically computed velocity of the oscillator in Eq. (2). (b) Corresponding load power. 

 

Conclusions 
The dynamics of an electromagnetic nonlinear energy harvester for rotational mechanisms is investigated. Parametric 

resonance is utilized to sustain the oscillations of a magnet over a broad range of frequencies. This is based upon the 

dependence of vibration response frequency superimposed upon the main shaft nominal steady speed. Numerical 

simulations demonstrate the efficacy of the concept with sustained harvesting of vibration energy and without the need for 

any system tuning. 
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