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Summary. The paper presents a generalized model of a periodic structure (bladed disk) which contains contact-friction and aero-elastic
couplings. Such structures are usually employed in e.g. steam turbine bladed disk to suppress blade vibration and over-tune the dynamic
blade characteristics. A complex non-smooth model is presented in a general form which can be further used for analytical-numerical
investigation of different dynamical phenomena like sliding and grazing bifurcation.

Introduction

The aero-elasticity issue stays actual because modern aerofoils and turbine blades are designed for higher efficiencies and
higher power under higher operational temperatures and flow rates. Higher operational safety and economical demands
force the designers to be more precise during phase of design with respect to operational condition laying out of the area
with loss of stability [1, 2, 3]. The fluid-induced forces create an aero-elastic couplings between the aerofoils and the fluid
flow. Moreover, in the case of periodical structures (gas or steam turbine blades in bladed disks) the aero-elastic coupling
influences not only the single blade but the adjacent blades as well.
The blade dynamics can become quite interesting especially in cases when the adjacent blades are mutually interconnected
by any kind of shrouding. In the case of blade vibration, bending and torsional modes are the most important and moreover
the bending and torsional motion are coupled because of non-symmetrical blade profiles [4]. There are many experimental
works investigating experimentally the conditions of instability origin, e.g. [5, 6]. The paper deals with the modelling
and dynamical analysis of a periodic blade system with aero-elastic and contact-friction couplings. The aim is to provide
mathematical formulation of such a system in terms of non-smooth dynamics. The aim is to model and investigate the
influence of aero-elastic effects, which can from certain boundaries pump the energy into the system, along with the
contact-friction couplings , which should serve as energy sink. Since the contact-friction couplings have non-smooth
character, different dynamical scenarios can occur during the system running (e.g. sliding and grazing bifurcations).

Bladed disk including contact-friction and aero-elastic couplings

Further, it is assumed the bladed disk hasNB blades which are created by identical airfoil profiles. Each blade is modelled
by the approach presented in the previous section, i.e. it comprises two degrees of freedom (bending and torsion) and
moreover these two motion are mutually coupled by so called bending-torsion coupling, see [4]. Usually, in steam turbine
applications, the bladed disks are equipped with different kinds of shrouding, which causes that the system of blades
mounted on a rotating disk become more stiff, especially with respect to axial flow direction.
In Fig. 1, the blade cascade of a bladed disk is depicted in a plane view. The axis of rotational symmetry designates
the axis of rotor symmetry which is the bladed disk attached to. Further, it is assumed that the flow direction is parallel
with the blade chords. The shrouding is supposed to be mounted at tips of the blades and it is modelled by means of two
lumped springs representing bending kshb and torsional ksht stiffness of each shrouding section between two adjacent
blades.
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Figure 1: Bladed cascade section with contact-friction shrouding coupling modelling.

The detailed derivation of the linearized mathematical model of a disk with aero-elastic couplings is described in [7].
Here, the model is completed by the influence of contact-friction shrouding coupling. It can be advantageously written in
matrix form

MBDq̈BD + CBDq̇BD + KBDqBD = fEBD + fCC
BD + fFC

BD , (1)
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where MBD, CBD and KBD are rectangular of order 2NB mass, damping and stiffness matrices of a complex bladed
disk model. Right hand side of (1) contains force vectors of contact coupling fCC

BD and friction coupling fFC
BD . Vector of

generalized coordinates is of following form qBD = [. . . , xi, ϕi, . . . ]
T ∈ R2NB , where index i = 1, . . . , NB designates

the particular blade.

Local single blade non-smooth model formulation
The mathematical model contains both piecewise-smooth and discontinuous functions. Therefore, the model can be ad-
vantageously written in a form of autonomous, in general discontinuous, system of ODEs with local discontinuity bound-
aries [8]. Before, a generalized state-space has to be defined in following way x = [. . . , xi, ϕi, τi, . . . , ẋi, ϕ̇i, τ̇i, . . . ]

T ,
where τi represents a nondimensional time of each blade, which is connected to forcing frequency. First, let us deal with
the discontinuity boundaries description. Let us focus on a particular, let say i-th contact-friction coupling. In general, we
have two boundaries. The first

ΣC
i,i+1 := {x ∈ R6NB : HC

i,i+1(x) := ϕi + ϕi+1 = 0}, SC
i,i+1 := {x ∈ R6NB : HC

i,i+1(x) > 0}. (2)

ΣC
i,i+1 represents switching boundary between normal contact and release phases in the shrouding. The subspace SF

i,i+1

contains all state-space points, where the normal contact between blades i and i + 1 occurs. The friction switching
boundary can be then expressed as follows

ΣF
i,i+1 := {x ∈ SC

i,i+1 : HF
i,i+1(x) := ẋi − ẋi+1 = 0}, SF+

i,i+1 := {x ∈ SC
i,i+1 : HF

i,i+1(x) > 0},
SF−
i,i+1 := {x ∈ SC

i,i+1 : HF
i,i+1(x) < 0} (3)

and it forms a half-subspace in the global state space of the system. SF+
i,i+1 nd SF−

i,i+1 define two disjoint subspaces
regarding the friction coupling between two adjacent blades. Then, the degree of smoothness of the system in SC

i,i+1 is 1,
that is we consider a Filippov system [8].
The final dynamical model of a bladed disk with contact-friction couplings can be formulated by means of the unions of
local non-smooth models of every particular blade within the bladed disk. For the i-th blade holds

ẋi =


0, if xi /∈ SC

i−1,i ∧ xi /∈ SC
i,i+1

FC
i−1,i(x)f(SC

i−1,i,x) + FC
i,i+1(x)f(SC

i,i+1,x) + FF+
i−1,i(x)f(SF+

i−1,i,x) + FF−
i−1,i(x)f(SF−

i−1,i,x)+

+FF+
i,i+1(x)f(SF+

i,i+1,x) + FF−
i,i+1(x)f(SF−

i,i+1,x)

,

(4)
where f(A, x) is a binar function returning 1 if the element x belongs toA, 0 otherwise. The mathematical model (4) can
be further completed by sliding vector fields, which define the behaviour of the system at switching boundaries. Right
hand side functions in (4) depend on the structure matrices given in (1).

Conclusions

The paper presents the way how to model the aerodynamic stability of a bladed disk which is created by blade-airfoil
profiles mutually interconnected by shrouding at their tips. The aero-elastic coupling model is based on Theodorsen
nonstationary fluid flow model. The shrouding is considered by means of contact-friction couplings. Based on the model
formulation, the dynamics can be studied in terms of non-smooth system behaviour. Especially, the aim is to analyse
mutual dynamical interaction of aero-elastic couplings of blade profiles with shrouding dissipation effects.
To perform all the analyses numerically, an in-house software in MATLAB code has been developed and used to analyse
the bladed disk. This tool is supposed to use for different numerical analyses of the structures regarding the non-smooth
dynamic phenomena.
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