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Summary. In this paper, the transonic aerodynamic forces are investigated via a novel nonlinear reduced-order model. The reduced-

order model was represented by a nonlinear Wiener-Hammerstein models, and the corresponding parameters were estimated using 

a nonlinear system identification scheme. Based on the present nonlinear reduced-order model of transonic aerodynamic systems, 

transonic aeroelastic models can be established to predict the aeroelastic behaviors. To demonstrate the accuracy of these nonlinear 

models, the comparison of transonic aerodynamic force and flutter boundary computed via CFD and ROM of the three-dimensional 

Benchmark Active Control Technology (BACT) wing was first investigated. 

 
1. Introduction 

As well known, the nonlinear aerodynamic forces computed via the code of Computational Fluid Dynamics (CFD) are 

most reliable, but the large amount of computation makes it difficult to apply CFD to active flutter suppression. To 

solve this problem, great efforts have been made to establish Reduced-Order Models (ROMs), instead of high-

dimensional model of CFD, to compute the nonlinear aerodynamic forces. As summarized by Rozza [1], ROM has had 

a great variety of mathematical forms. The major methods of order reduction can be divided into three categories. The 

first uses subspace projection techniques, such as the Proper Orthogonal Decomposition [2-3] and harmonic balance, 

the second adopts generalized interpolation methods, such as Radial Basis Functions or Kriging interpolators [4-5], and 

the third uses identification techniques based on the input-output data, such as Volterra theory and neural networks [6-

7]. Although ROMs have witnessed successful applications to many engineering fields, some problems are still open 

in aeroelastic dynamics. The most essential problem is the ability to accurately model important aeroelastic phenomena, 

such as Limit Cycle Oscillations (LCOs). 

In this study, a parallel ROM of Wiener-Hammerstein type is proposed for modeling nonlinear aerodynamic systems. 

In Section 2, the method for establishing a nonlinear ROM of transonic aerodynamic systems is presented. In Section 

3, the ROM for an aeroservoelastic problem of a three-dimensional Benchmark Active Control Technology (BACT) 

wing is established. In Section 4, a discussion is made for the numerical simulations implemented to verify the accuracy 

of the nonlinear ROM and finally, a few concluding remarks are made in Section 5. 

 

2. Parallel Reduced-Order Model of Wiener-Hammerstein Type 

The Wiener model comprises a front linear part and a rear nonlinear part, and the Hammerstein model comprises a front 

nonlinear part and a rear linear part. Both models are able to describe nonlinear systems properly. The Wiener-

Hammerstein model, developed via the Wiener and Hammerstein models, consists of a front linear part, a middle 

nonlinear part and a rear linear part so that it has stronger ability to simulate nonlinear systems. Huang et al. presented 

a parallel ROM of Wiener type to efficiently estimate the dynamic pressure and oscillation frequency of the BACT 

wing in a flutter [8]. Their numerical results showed that the parallel ROM of Wiener type was able to accurately predict 

the transonic flutter boundary, but failed to accurately simulate the nonlinear aeroelastic behaviors, such as a limit-cycle 

oscillation. In this section, a novel nonlinear ROM approach is presented. 

 

2.1 Structure of Parallel ROM of Wiener-Hammerstein Type 

As shown in Fig.1, the single-layer ROM of Wiener-Hammerstein type yields 
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ny  are the state vector of the front linear part, the state 

vector of the rear linear part, the input vector and output vector of the front linear part, the output vector of the middle 

nonlinear part, and the output vector of the rear linear part, respectively. 
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 f  is a smooth, static, nonlinear function. 
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Fig.1 One layer ROM of Wiener-Hammerstein type 

Fig.2 shows the parallel ROM structure, where  ku  is the input of the front linear part for the time instant k . The 

front linear part can use the transfer function, the state space function or other linear functions, and the rear linear part 

is the same. The middle nonlinear part can use a variety of functions, such as piecewise nonlinear functions, saturation 

functions, and neural networks.   , 1,2i k i z y  is the output of the rear linear part, which estimates the generalized 

aerodynamic force. 
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Fig.2 Parallel ROM of Wiener-Hammerstein type for aerodynamic system 

In this study, the first layer of the ROM is first identified from the input and output data of CFD. Then, the input data 

of CFD and the difference between the output data of CFD and those of the first layer are used as the input and output 

data, respectively, to identify the second layer. This procedure can be repeated until the generalized aerodynamic forces 

predicted by ROM satisfy the given accuracy. As a symbol of the end of the cycle, the percentage of the coefficient of 

Variance Accounted For (VAF) between the output data of CFD and those estimated is defined as follows 
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The VAF value decreases as an increase of the signal differences. The VAF is 100% when the two signals are 

completely consistent. When a new layer of the ROM is identified, the VAF value between the real output data and 

those estimated is computed. The above cycle stops when the VAF value is less than 5% because the layer has almost 

no useful information. If this is case, the layer should not be added into the parallel ROM layer. When all of the layers 

of the parallel ROM are identified, the final output of the parallel ROM can be computed as 
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2.2 Identification of Front Linear Part of Parallel ROM of Wiener-Hammerstein Type 

As studied by Huang et al. [8-9], the linear part identified by using the optimized Predictor-Based Subspace 

Identification (PBSID) method [10-11] has many advantages, such as high precision and strong stability, and can be 
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applied to the closed loop system. In addition, once the input and output data of the CFD are obtained, the linear part 

can be uniquely determined via optimized PBSID. 

First, a Vector AutoRegressive with eXogenous inputs (VARX) predictor can be described as 

      
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where k   is the size of the past window, iA  and iB  are the matrices to be estimated. To simplify the 

identification, the matrix   1n m t nt  
Θ  that contains iA  and iB  becomes the only VARX parameter to be 

identified and is denoted as 

  1 0 1 1 .t t t t Θ B B B A A A  (7) 

The VARX parameters can be identified by the least squares method as  

 ,Θ YΩ  (8) 

where  


 is the pseudo inverse and Y  and Ω  is denoted as 
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Once the AVRX parameters are defined, the system matrices , , ,w w w wA B C D  in Eq.(11) can be identified via the 

subspace identification method. The details of the identification process can be found in Chiuso [10] and Houtzager et 

al. [12]. The system matrices can be obtained as 
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where the input vector U  is denoted the same form as Y . 

 

2.3 Identification of Nonlinear Part of Parallel ROM of Wiener-Hammerstein Type 

As stated above, the linear part identified via the PBSID method with the CFD input and output data can be used as the 

initial parameters of the front linear part. As well known, neural networks serve as an excellent method to describe 

nonlinear systems. In this study, hence, a neural network is used as the nonlinear part, where the neural network is 

composed of z neurons described by tanh . The parameters of the nonlinear part are identified via the Levenberg-

Marquadt (LM) [13] algorithm and then optimized with the initial parameters of the front linear part all together by the 

LM algorithm again. The second optimization may change the initial parameters to reach the goodness fit of the CFD 

output and parallel ROM output data. 

 

2.4 Identification of Rear Linear Part of Parallel ROM of Wiener-Hammerstein Type 

Once the parameters of the front linear part and the nonlinear part are determined, the subsequent step is to determine 

the parameters of the rear linear part. This procedure can be completed by using the output of the nonlinear part and the 

CFD output as the input and output data via the PBSID algorithm. When layer ith of the parallel ROM is estimated, the 

residuals of the output are computed as 
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where  res ky  is the output residuals and used as the output of the next layer. If the VAF value of the (i+1)th layer 

computed via Eq. (14) is less than 5%, the new layer most likely does not contain useful information and, therefore, 

the parallel ROM is made up of the front i Wiener-Hammerstein models. 

 

3 Dynamic Equation of Aeroservoelastic System 

This section presents the aeroservoelastic model of the BACT wing via the parallel ROM. A BACT wing equipped 

with a trailing-edge control surface and upper- and lower-surface spoilers has been widely studied in numerical 

simulations and experiments [14-15]. In this study, the BACT wing with a trailing-edge control surface only is used to 

verify the accuracy of the parallel ROM. 

The dynamic equation of the BACT wing with a trailing-edge control surface yields 
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where h , , and   are the plunge displacement, the pitch angle of the BACT wing and the deflection angle of the 

trailing-edge control surface, respectively. q  is the dynamic pressure of coming flow, hQ  and Q  are the 

unsteady lift force and moment, respectively. In the study, the parameters of the BACT wing are taken as 
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The physical explanations of above parameters can be found in Waszak et al. [16]. 

The equation (17) can be recast in the modal space 
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where   is the mode shape matrix, 1  and 2  are the modal displacements of the first order and the second order, 

respectively. In practice, the deflection angle of the control surface cannot respond instantaneously to the control input, 

but yields the following dynamic model of the actuator 

 2 2

0 0 0 02 ,ck          (19) 

where 0k ,  , 0 , and c  are the gain, the damping coefficient, the natural frequency and the control command, 

respectively. The values of these parameters and their physical explanations have been discussed by Waszak et al. [16] 

in detail. Eventually, the aeroservoelastic equation of the BACT wing with the dynamic model of actuator is formulated 

as 
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where 
1 2 1 2

T

s         x  is the state variable vector, and the definitions of matrices sA , cB , qB , and 

Q  can be found in Appendix C.  
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where  
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Once the aeroservoelastic mathematical model is constructed, the response of the BACT wing can be numerically 

computed via an integration algorithm [17]. 

Numerical Simulations and Discussions 

This section presents the numerical validation of the accuracy of the parallel ROM and the robustness and anti-

interference of the active flutter suppression system. The basic information required for training the ROM was 

computed first via a Reynolds-averaged Navier-Stokes flow solver. The specific heat ratio and Reynolds number were 

set to 1.132 and 3.96 million, respectively, based on the wing chord in all the computations. In the study, the Mach 

numbers in the numerical simulation covered a wide range, and the results of the numerical computation were given 

only for Mach 0.825. The ROM output and control effect data of the remaining Mach numbers are presented in a single 

graph as a summary. 

As well known, the Filtered Gaussian White Noise (FGWN) function [18] can reduce the computation time and 

motivate most characteristics of nonlinear aerodynamics. In this study, therefore, the FGWN function was used as the 

input signal for CFD simulation. To cover the natural frequency of the BACT wing, the bandwidth of the input signal 

was taken as 0 ~ 300 rad/s , and the amplitude of the generalized displacement of the first two orders was set as 0.2, 

whereas the deflection angle of control surface was assumed to be less than 5 . The time step in the CFD simulation 

was approximately taken as 31.0 10 s . A total of 6000 time steps were computed, and the number of input and output 

signals was set to 6000. 

In the study, the order of the front linear part, the rear linear part and the number of neurons were taken as 8, 8, and 10, 

respectively. Fig.3 shows the comparison between the generalized aerodynamic forces computed via the CFD and ROM, 

and the input were the same FGWN signals. Fig.3 indicates that the results computed via the ROM and CFD look 

almost the same. These results show that the ROM could accurately predict the generalized aerodynamic forces under 

the above condition. To validate the accuracy of the parallel ROM when the input signals were different types, a 

simulation was made when the input of control surface was a sinusoidal signal. As shown in Fig.4, the output computed 

via the parallel ROM was in a good agreement with that via the direct CFD simulation. 

 

Fig.3 CFD model and parallel ROM outputs under the FWGN excitation 
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Fig.4 CFD model and parallel ROM outputs under the sinusoidal excitation 

The transonic flutter boundary was first investigated in the open-loop aeroservoelastic responses of the BACT wing. 

To verify the precision and wide applicability of the ROM, Fig.5 presents the transonic flutter boundary predicted by 

the ROM in comparison with the CFD results at Ma =0.63, 0.70, 0.71, 0.75, 0.77, 0.80, 0.82, and 0.825. Moreover, 

Fig.5 also shows the results of parallel ROM of the Wiener type and linear ROM for comparison. As shown in the 

figure, the flutter boundary predicted by the parallel ROM was very close to that computed by the CFD, and had higher 

accuracy than that of the parallel ROM of Wiener type. Hence, the parallel ROM had high accuracy to simulate the 

nonlinear aerodynamic forces. 

The LCO phenomenon produced due to the nonlinear aerodynamic forces is the other important research hotspot. In 

this study, the LCO of the BACT wing was then investigated at Ma =0.825 with q =190 psf. Fig.6 shows the time-

varying generalized displacement computed via the ROM. The figure indicates that the maximum of the generalized 

displacement increased slowly over time, and then the maximum of the generalized displacement approached to a fixed 

value after a period of time. To reduce the computational time, the initial speed of the generalized model was set to 

 1 0 0   and  2 0 1.5   in the study. Fig.7 presents the comparison between the LCO computed by using the ROM 

of Wiener-Hammerstein type and that computed by using the CFD simulation and the ROM of Wiener type. Here, the 

ROM results were basically the same as the CFD results. Table 1 shows the computation times for the ROM of Wiener-

Hammerstein type with training and for CFD, respectively. When the ROM was established with all parameters 

determined, the computation time for simulating the LCO phenomenon was only dozens of seconds. The comparison 

hence shows that the ROM enables one to greatly improve computation efficiency. 

 

Fig.5 Comparison of the flutter dynamic pressures predicted via different models 
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Fig.6 Time histories of LCO computed via the nonlinear parallel ROM 

 

Fig.7 Comparison of the phase portraits of the LCO via different models 

According to the above numerical computations, it can be concluded that the parallel ROM of Wiener-Hammerstein 

type can greatly shorten the computation time on the premise of guaranteeing the computation accuracy of the nonlinear 

aerodynamic forces. The identified ROM can completely replace CFD simulation as the control object in the design of 

the active flutter suppression for numerical computations. 

 

5. Conclusions 

In this study, the parallel ROM of Wiener-Hammerstein type was established and the presented ROM had a strong 

ability to describe nonlinear aerodynamic forces. In addition, it could precisely predict the dynamic pressure of flutter 

and the LCO amplitude of the three-dimensional BACT model. 
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