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Summary. Trapped Degenerate resonators offer significant advantages for several sensing applications including mass detection and 
gyroscopic sensors. In this paper the trapped degenerate modes of vibration produce in-plane displacements at the surface of the resonator. 
Out of plane motion of the surface is relatively small and can be reduced through modification of the design thus making this device type 
ideal for sensing under fluid where out of plane displacement would result in significant or total quenching of the required vibration. 
Excitation of the pair of degenerate modes is performed through magnetic acoustic coupling using a superposition of a time harmonic 
axisymmetric magnetic field with static cyclically symmetric magnetic field. The cyclic order of the magnetic field determines the mode 
order of the resonant response. The experimental modeshape has been mapped using 3D laser vibrometry and compares favourably with 
full elastodynamic finite element modelling.  
 

Introduction 
 
Mass sensing under liquid presents a significant challenge to mechanical resonators. It has been reported, [1], that out 
of plane surface displacement causes severe damping rendering resonant based mass detection impossible. In this study 
the resonator geometry is configured to support trapped degenerate modes with in-surface shear vibrations at its 
surface. The resonator will be expected to possess an inherently high quality factor and permit mass detection under 
liquid through differential measurement of a pair degenerate resonant frequencies [2]. Mass sensing using through the 
absolute frequency shift of a single mode of vibration of a magnetic acoustic resonator as in [4-9] is susceptible to any 
environmental effect that can cause changes to the resonant frequency of that single mode. An alternative approach 
largely insensitive to the unwanted causes of frequency shift is made possible through using well-known degenerate 
modal properties of cyclically symmetric structures [10]. Independent cyclic modes which vary circumferentially as 
sin (𝑛𝑛𝑛𝑛) and cos (𝑛𝑛𝑛𝑛), 𝑛𝑛 ≠ 0, share a common resonant frequency 𝜔𝜔𝑛𝑛. When mass is added to these resonators, in a 
way which disrupts this symmetry, then the degeneracy is broken and the single resonant frequency ‘splits’ to yield 
two, close, resonant frequencies 𝜔𝜔𝑛𝑛1 and 𝜔𝜔𝑛𝑛2. This frequency split is used to record the added mass. Common mode 
effects e.g. temperature and liquid effects are removed by this differential measurement [3]. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.1 System description 
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Description of the system 
 
The resonator is formed in aluminium plate with a central circular mesa machined symmetrically onto the top and 
bottom surfaces. The dispersion relation for an infinite aluminium plate can be plotted for the two thicknesses 
corresponding to the plate with and without the mesa. Figure 2 shows the dispersion plots. The Bechmann numbers kB1 
and kB2 define the frequencies in the plate and mesa respectively corresponding to case where the radial wave number 
ξ is zero [11]. Furthermore, the Bechmann numbers define the cut-off frequencies below which the radial wave 
number ξ becomes imaginary. By selecting a frequency parameter kBC such that kB1< kBC< kB2 the wave in the region 
defined by the mesa will be propagating whilst the wave outside the mesa will be evanescent. The mode is localised. 
The resonant frequency 𝜔𝜔𝐵𝐵 is related to the frequency parameter by 𝑘𝑘𝐵𝐵 by 
𝑘𝑘𝐵𝐵

2 = 𝜔𝜔𝐵𝐵
2ℎ2 𝜌𝜌

𝜇𝜇
  

where ρ and µ are the mass density and shear modulus for the Aluminium. 
 
The trapped and quasi-trapped modes are expected to have a resonant frequency 𝜔𝜔𝐵𝐵𝐵𝐵  with 
 𝜔𝜔𝐵𝐵1< 𝜔𝜔𝐵𝐵𝐵𝐵< 𝜔𝜔𝐵𝐵2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Dispersion plot for layered plate 
 
 

Electromagnetic excitation of cyclically symmetric in-plane modes 
 
Electromagnetic excitation of acoustic waves was first demonstrated in the late 1960’s [12] and has been explored in 
recent years as a means of realising high quality factor resonators for mass detection [5-9]. Figure 1 illustrates the 
device, the excitation and detection coils. The mechanical resonator is an aluminium plate with a central mesa machined 
symmetrically on its top and bottom surfaces. A sinusoidally time varying current is driven through the pancake coil 
situated below the central mesa. Directly below the excitation pancake coil is a cyclically symmetric arrangement of 
permanent magnets. 

. 
As the pancake coil is axisymmetric to first order, the induced Eddy current in the aluminium plate will also be 
axisymmetric. The Eddy current is confined within the skin depth near the bottom surface of the Aluminium plate. The 
Lorentz interaction of this Eddy current with the permanent magnetic arrangement results in a circumferentially 
distributed time varying force that can be used for resonant excitation of degenerate modes. The nature of the forcing 
from the combination of static and time varying magnetic fields is conveniently described by the Maxwell stress [16].  
With reference to figure 1, (𝑟̂𝑟,𝜃𝜃�, 𝑧̂𝑧) defines unit vectors in the radial, tangential, and out of plane directions. The 
displacement vector of an arbitrary point P is �𝑈𝑈𝑟𝑟𝑟̂𝑟,𝑈𝑈𝜃𝜃𝜃𝜃�,𝑈𝑈𝑧𝑧𝑧̂𝑧�. The air gap between the aluminium plate is very small 
compared to the in-plane dimensions of the plate. As a result, the cyclic arrangement of permanent magnets creates a 
magnetic flux density in the aluminium plate which may be approximated to 
 
𝐵𝐵(𝑝𝑝) = 𝐵𝐵𝑧𝑧

(𝑝𝑝) cos(𝑛𝑛𝑛𝑛) 𝑧̂𝑧 . 
 
For the case considered n=2. Fourier decomposition of the cyclic arrangement of permanent magnets will also contain 
other harmonics. These additional harmonics are small relative to the fundamental component n=2 and are consequently 
neglected.  The magnetic flux density generated by the pancake coil can be described by 
𝐵𝐵(𝑐𝑐) = �𝐵𝐵�𝑟𝑟

(𝑐𝑐)𝑟̂𝑟 + 𝐵𝐵�𝑧𝑧
(𝑐𝑐)𝑧̂𝑧�𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖   
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The magnetic flux density of the coil is orders of magnitude smaller than that of the permanent magnetic. A small 
parameter 𝜖𝜖 may then be defined as 

𝜖𝜖 = 𝐵𝐵�𝑟𝑟
(𝑐𝑐)

𝐵𝐵𝑧𝑧
(𝑝𝑝)  where 𝜖𝜖 ≪ 1. 

Similarly, the radial component of the field from the coil dominates then the approximation 𝐵𝐵�𝑧𝑧
(𝑐𝑐) = 𝜖𝜖𝐵𝐵�𝑟𝑟

(𝑐𝑐) can be made 
yielding  
𝐵𝐵(𝑐𝑐) = �𝜖𝜖𝐵𝐵𝑟𝑟

(𝑐𝑐)𝑟̂𝑟 + 𝜖𝜖2𝐵𝐵𝑧𝑧
(𝑐𝑐)𝑧̂𝑧�𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  

 
The total magnetic flux density is 
𝐵𝐵 = 𝐵𝐵(𝑐𝑐) + 𝐵𝐵(𝑝𝑝)  
 
The Maxwell stress components acting in the Aluminium plate due to the total magnetic flux density can be determined 
from 
𝜎𝜎𝑖𝑖𝑖𝑖 = 1

𝜇𝜇0
�𝐵𝐵𝑖𝑖𝐵𝐵𝑗𝑗 −

1
2
𝛿𝛿𝑖𝑖𝑖𝑖𝐵𝐵2� . 

 
The stress components acting within the plate are therefore  
𝜎𝜎𝑟𝑟𝑟𝑟 = 1

𝜇𝜇0
�𝜖𝜖𝐵𝐵𝑟𝑟

(𝑐𝑐)𝐵𝐵𝑧𝑧
(𝑝𝑝) cos(𝑛𝑛𝑛𝑛)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑂𝑂(𝜖𝜖3)�                

𝜎𝜎𝑧𝑧𝑧𝑧 = − 1
2𝜇𝜇0

�𝐵𝐵𝑧𝑧
(𝑝𝑝)2cos2(𝑛𝑛𝑛𝑛) + 𝑂𝑂(𝜖𝜖2)�  

𝜎𝜎𝑟𝑟𝑟𝑟 = 𝑂𝑂(𝜖𝜖2)  
 
Resonant excitation of the SH modes of cyclic order n is made possible through the shear stress 𝜎𝜎𝑟𝑟𝑟𝑟. As the 𝜎𝜎𝑟𝑟𝑟𝑟 stress 
distribution is confined to the within skin depth from the bottom surface, the harmonic forcing will preferentially excite 
in-plane shear modes which are antisymmetric through the thickness. However, it should be noted that the generalised 
force pertaining to the symmetric modes is not zero.  
 

Numerically calculated modeshape 
 
The frequency response of the system was calculated using COMSOL finite element analysis software in order to 
provide a comparison with the experimental results. A full elastic model was used. Figure 3 shows the displacement 
components of the mode corresponding to the experimentally characterized response. Note that the numerical model is 
perfectly axisymmetric and as a result the cyclic modes are degenerate.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

Fig.3 Modeshape displacement components determined through finite element modelling 
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Experimental frequency response and modeshape 
 
The frequency response was measured both electromagnetically and by laser vibrometry. The frequency range of 
interest was determined by the Bechmann numbers. Figure 4 shows the measure frequency response for this range. All 
the responses shown are of cyclic order n=2. Structural imperfections breaking the conditions for ideal degeneracy will 
be inevitable. This causes a frequency split between the modes within each pair which is evident in the figure. The 
response of both largest amplitude and Q-factor was exhibited by the mode pair with the average resonant frequency of 
𝜔𝜔𝑛𝑛= 834.5 KHz. Due to its relatively high Q factor (30000) this mode pair is most likely the quasi-trapped mode.  Laser 
vibrometry using the Polytec MSA 100 3D was performed to measure the inplane and out of plane displacement 
displacement of the resonant response. Figure 5 shows the measured displacement components. Note that the radial 
displacement component is shown as a magnitude plot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4 Modeshape displacement components determined through finite element modelling 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Fig.5 Experimental modeshape displacement components measured by 3D laser vibrometry 
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Experimental configuration  

 
 
The complete experimental setup is shown in figure 4. The EMF V generated in the aluminium plate is a consequence 
of two effects and is described by  
𝑉𝑉 = −∮ 𝑑𝑑𝐴𝐴

𝑑𝑑𝑑𝑑
.𝑑𝑑𝑑𝑑 + ∮�𝑣𝑣 𝑥𝑥 𝐵𝐵� .𝑑𝑑𝑑𝑑      

The time dependent vector potential 𝐴𝐴 = 𝐴𝐴𝜃𝜃(𝑟𝑟, 𝑧𝑧)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃� generated by the excitation coil generates an EMF in the 
aluminium plate which is independent of the vibration. Detection of the motional EMF from the 𝑣𝑣 𝑥𝑥 𝐵𝐵 component, 
where 𝑣𝑣 is the velocity of the plate surface, is through the magnetic field generated by this harmonic motion. Detection 
of this magnetic field is accomplished through the pair of identical sense coils S1 and S2 and follow conventional EMAT 
principles. Frequency responses test where obtained using a Zurich Instruments HF2LI Lock-in Amplifier.  
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 8 Experimental Configuration. 
 
 
 
 
 

Fig.6 Experimental modeshape displacement components measured by 3D laser vibrometry 
 
 

Conclusions 
 

Electromagnetic excitation of cyclically symmetric trapped elastic waves resonances have been experimentally 
demonstrated. The displacement field of the resonant response has been characterised using 3D laser vibrometry and 
shows that the in-plane surface motion dominates the response. The radial and tangential displacements components of 
this response are highly localised to the region defined by the mesa. The out of plane displacement does not possess the 
same degree of localisation. The principal cause of the out of plane displacemnet is coupling casued by the relatively 
large vertical step due to the mesa. Further work will investigate geometries that minimise the out of plane displacement. 
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