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Summary. In this work an approximate approach is proposed to determine the stability and response of quasi-periodic (QP) Mathieu type 
equations. Although Floquét theory is applicable only to periodic systems, it is suggested here that a QP system may be replaced by a 
periodic system with an approximate large principal period and thus making it suitable for an application of the Floquét theory. Based on 
this premise, a systematic approach has been developed and applied to a typical QP system. The approximate stability chart shows excellent 
agreement with numerical results. 

 
Introduction 

 
Parametrically excited systems are encountered in various fields of science and engineering. The mathematical models of 
these systems are generally represented by linear ordinary differential equations with time varying coefficients. In most cases, 
these systems have been modeled by Mathieu’s or Hill’s equations (periodic coefficients) because their stability and response 
can be determined using Floquét theory [1]. However, in reality, the parametric excitation is not periodic but consists of 
frequencies that are incommensurate; hence making it quasi-periodic (QP). For instance, parametric resonance in sailing ships 
has been studied via Mathieu/Hill equations. However, sea waves are not periodic but composed of incommensurate 
frequencies leading to a QP system. Beating heart is another example where the motion is also not purely periodic and the 
equation of motion turns out to be a QP Mathieu equation. Unfortunately, there is no complete theory for linear ordinary 
differential equations with QP coefficients. Therefore, in the present investigation an attempt has been made to provide an 
approximate methodology for a general class of QP systems that arises in science and engineering. The development of such 
an approximate theory allows one to construct Lyapunov-Perron transformation matrices that reduce the linear QP systems to 
the systems with constant coefficients.    
 

Proposed Methodology 
 

The damped QP Mathieu equation can be written in the state space form as, 
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m      is the frequency basis of the coefficient matrix ( )A t , , andia b d  are 

the system parameters and t is the time. When ( )A t has finite ( 2m  ) incommensurate frequencies, ( )A t is QP.  Floquét 

theory cannot be applied to determine the stability and response of Eq. (1) as the principal period of ( )A t tends to infinity. 

However, an approximate period can always be defined such that for every 0  ,  there exists a length of time ( )T  that 

contains a number, ( )aT  for which ( ( )) ( )aA t T A t    .The ( )aT  can be determined by truncating the frequency module 

i.e. 1 1 2 2 m mk k k      of ( )A t  where 0,1,2,ik   1 2and 0mk k k    . The ‘minimum frequency’, min in the 

truncated frequency module is used to determine the approximate period of the QP system. Thus, 
                               min 1 1 2 2 min min( ) ; 0 and 2m m aMin k k k T                                         (2) 

Once min and aT have been determined, the original QP system can be replaced by following periodic system, 
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where, i is approximated by i such that i are the integral multiples of min and min remains the minimum frequency in 

the approximated system. Since the approximate system is periodic in nature, its stability and response can be determined by 
Floquét theory. It is expected that the approximate system (c.f. Eq. (3)) yields an approximate solution of the original QP 
system, Eq. (1). In the following, a two frequency case ( 2m  in Eq. (1)) is discussed to show the viability of the proposed 
method. For the sake of convenience numerical computations are performed by setting 1 2b b b  . All computations are 

numerical and , anda b d are not assumed to be small. 

 



A Case Study 
 

Two frequency cases are the simplest examples of QP Mathieu equations. We consider the case of 1 2and 7.0    . As 

a first step, min and aT are calculated over a range of 1 2andk k and subsequently approximate system is determined by 

replacing i  in Eq. (1) by i . Once the approximate system has been defined, stability charts can be plotted using the Floquét 

theory. Zounes and Rand [2] used the concept of winding number and reported that all the unstable regions in the QP systems 

arise from  2

1 1 2 2 4 ; 0,1, 2,...ia k k k    and the main instability regions will stem from 2
1 4 2.46740a  

1 2( 1 and 0)k k  and 2
2 1 24 12.25( 0 and 1)a k k    which are same as the bifurcation points of the main instability 

regions of periodic systems ( 2 4ia  ) with excitation frequencies 1 2and 7.0    . The convergence study of 

bifurcation points of main instability regions may be used as a guideline in the selection of min and is shown in Fig. 1. It is 

expected that with relatively smaller min , the proposed method will yield better results. However, with the decrease in min
, aT increases and hence require longer computation time. Keeping computational time reasonable, min 0.0442270  is used 

in further investigations. For min 0.0442270  , 142.067aT  , 1 min71 ( )    and 2 min158 ( 7)   . 

Fig. 2 shows the stability charts for the undamped system ( 0d  ). A number of aT and 2 aT unstable regions could be observed 

in the a b plane. These unstable regions are either due to primary frequencies ( 1 and 2 ) or due to various combinations of 

1 and 2 . Since the approximate system is periodic with period aT , the unstable regions will originate from  2

min 4a k  

in the a b plane and the main instability regions will stem from 2.46508 and 12.2076a a  . These bifurcation points are 

close to the results obtained from Zounes and Rand [2] expression for bifurcation points. In fact, Zounes and Rand [2] 

expression is same as  2

min 4a k  if   1 1 2 2k k  is replaced by  mink . Since 1 2andk k are finite by the definition of 

min , the results obtained by the proposed method is a subset of results given by Zounes and Rand [2] expression.  

The qualitative behavior of the approximate and exact solutions is studied with the help of Poincaré maps at some typical 
points near the stability boundaries of prominent regions (marked as R1 through R7 in Fig. 2) and are found to be similar. The 
Discrete Fourier Transform of the solutions ensured that the approximate stability boundaries computed using Floquét theory 
are accurate representation of exact boundaries.  
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Figure 2: Stability charts for undamped system ( 0d  ): Red- 2 aT periodic, Blue- aT periodic 

Figure 1: Convergence of bifurcation points of main instability regions.  


