

Sophia Kinderziekenhuis

Teaching Course Budapest 2016

Behavioural., neuropsychological and psychiatric aspects of neurology

ABNORMAL DEVELOPMENT RED FLAGS AND CLUES TO DIAGNOSIS

Coriene Catsman-Berrevoets c.catsman@erasmusmc.nl

Financial burden to society

Costs to society of brain disease

How to analyse a child with a developmental disorder

• Patient history: parents, social circumstances, daycare, school etc

Than choose the most helpful technical evaluations

Important questions in patient history

- When was the developmental delay firts noticed?
- Slow development? No further development? Regression?
- Which aspects do not develop: mainly motor problem, language, behaviour?
- Family history? Relatives with similar problems? Consanguinity?
- Detailed history:

Pregnancy, perinatal problems, developmental milestones, cerebral trauma, epilepsy,....

Erasmus MC

Important is information on

visual, auditory sensory disturbances

← Behaviour

← Neglect / abuse

Intercurrent illness, environmental deprivation / hospitalisation

← Familial occurrence of similar developmental problems

Erasmus MC

Focal neurological signs / symptoms

Mixed aphasia Bradyphrenia Behavioural disorder Memory and concentration disorder Right piramidal paresis

Disabilities after ABI may become apparent later in life through growing into deficit

50% of survivors of moderate-severe TBI have an unfavourable outcome

Erasmus MC

Decide the type of the developmental disorder

Erasmus MC

Regression of development without obvious event

- Common disorders
- (Affective) abuse / neglect/
- Chronic illness (hospitalisation)
- Hypothyreoidie
- Intoxications (Pb)
- Deficiencies
- (low grade) brain tumour
- Chronic infections
- Large group of rare diseases

Rare diseases are a common cause of developental regression

- Metabolic diseases
 - Aminoacidopathies
 - Lysosomal diseases
 - Mitochondrial disease
 - Peroxisomal disease
 - Congenital defects of glycosylation (CDG)
- Many others
 - Rett syndrome
 - Limbic encefalitis
 - Infantile neuroaxonale dystrofy and related diseases
 - Etc

Analysis may be complicated and time consuming

Decide the type of the developmental disorder

The red flags at first sight in children with developmental problems

- ← Skull circumference and shape
- ←Skin abnormalities
- ← locomotion

- ← Behaviour
- ←Dysmorfic features

Definition Microcephaly

- Occipital-frontal circumference < -3 sd
 - Corrected for age, gender, gestation

Growth pattern of different types of microcephaly

Describe what you see

Simplified gyral pattern

Classification microcephaly

- Primary
 - Develops before 32th week of gestation
- Secondary
 - acquired

Etiological overlap between primary and secondary microcephaly

- Syndromal / genetic
- Metabolic disorder
- Environmental factors
- Infections

Aetiology

acquired/ secondary micocephaly

- Traumatic
 - Infarction /hemorrhage
 - (twin to twin transfusion)
- Congenital Infection

- Deprivation (maternal)
 - Hypothyroidy
 - Malnutrition
 - etc.
- TORCHES: Toxoplasma, Rubella, CMV, HSV, Syphilus: Zikka??
- Teratogenic (maternal)
 - Toxic: fetal alcohol syndrome, smoking, lead, pesticides, etc
 - Systemic disease (PKU, diabetes)
 - Medication (for example antiepileptic drugs)

Erasmus MC

Diagnosis: Early Infantile Epileptic Encephalopathy type 10 (PNKP-gen)

Another example: Marilotte 2 ¹/₂ years old

- Developmental delay, SC < -3</p>
 - Can crawl, sits unsteady, pulls to to standing
 - Does not speak, only grumbles
 - Situative understanding
 - Salivates a lot
 - Happy child, laughs a lot
 - Hyper-motoric behavior, waves with her hands
 - Loves playing with water

Marilotte 2 1/2 years old

- Ophtalmologist: no abnormalities .
- MRI brain: normal
- array: deletion chromosome 15:
- Angelman syndrom or PWS ?
- DNA : Angelman syndrome

http://www.youtube.com/watch?v=bzVZ8QLQH2w

DIAGNOSTIC CRITERIA (2005)

- A. Consistent features (100%)
 - 1. Developmental delay, functionally severe.(IQ 20-30)
 - 2. Movement or balance disorder, usually ataxia of gait, and/or tremulous movement of the limbs. Movement disorder can be mild. May not seem as frank ataxia but can be forward lurching, unsteadiness, clumsiness, or quick, jerky motions.
 - 3. Behavioural uniqueness: any combination of frequent laughter/smiling; apparent happy demeanor; easily excitable personality, often with uplifted hand-flapping movements, or waving movements; hypermotoric behaviour.
 - 4. **Speech impairment**, none or minimal use of words; receptive and non-verbal communication skills higher than verbal ones.
- B. Frequent features (more than 80%)
 - 1. Delayed, disproportionate growth in head circumference, usually resulting in microcephaly (<_2 SD of normal OFC) by age 2 years. Microcephaly is more pronounced in those with 15q11.2-q13 deletions.
 - 2. Seizures, onset usually <3 years of age. Seizure severity usually decreases with age but the seizure disorder lasts throughout adulthood.
 - 3. Abnormal EEG, with a characteristic pattern of large amplitude slow-spike waves. The EEG abnormalities can occur in the first 2 years of life and can precede clinical features, an Education of the not correlated to clinical seizure events.

Dysmorfic features

- Light skinned, blond hair
- Facial features become more prominent in time
- brachy-microcephaly
- broad face, narrow mid-face
- broad mouth, wide spaces between teeth
- Pointed chin, later mandibulare prognathy
- Tongue protrusion

Dysmorphic features in Angelman syndrome become more evident later in life

Van Buggenhout et al, Eur J Hum Genet 2009;17:1367-1373

Erasmus MC

Epilepsy in Angelman syndrom

- 85 % epilepsie
- onset at age 12-18 months
- No specific type of epilepsy
- May hav very long lastig (weeks) partiel status
- EEG, with a characteristic pattern of large amplitude slow-spike waves
- Often refractory

Behavioural characteristics

- hand-flapping (happy puppet)
- social smiling without babbling, later typcal bout of laughter
- Social children
- Hyperactive, impulsive, easily distracted
- Fixations (specific food, water)
- Autistiform behavioural features
- Sterotype movements
- Later rigidity

http://youtu.be/lpWl2DucZM4

Genetics

- central role UBE3A gene on *maternal* chromosome 15q11-13
- in 90% genetic diagnosis possible
- Almost always de novo mutation
- 4 variants
 - 1. deletion 15q11-13 (70%)
 - unipaternal disomy (3%)
 - imprinting deficit (5%)
 - UBE3A-mutation (20%)

Skull circumference >3SD: Macrocephaly

- Abnormal increase of one of the components in the skull :
 - Spinal fluid
 - Blood
 - Bone
 - Brain tissue

Erasmus MC

zafing

Increase spinal fluid volume

- Communicating hydrocephalus
- Obstructive hydrocephalus
 - Primary
 - Secundary
- Benign external hydrocephalus

Posthemorrhagische comm hydrocefalus. Vertinsky, Top Magn Reson Imaging (2007) 18 (1): 31-51

Aquaductstenose. Vertinsky, Top Magn Reson Imaging (2007) 18 (1): 31-51

1C

Increased volume blood in other compartments

- (Chronic) subdural hematoma
- Hygroma
- Empyema
- Vein of Galen malformation

Vene van Galen malformatie. Vertinsky, Top Magn Reson Imaging (2007) 18 (1): 31-51

Subdurale hematomen. Vertinsky, Top Magn Reson Imaging (2007) 18 (1): 31-51

musMC ट्रब्राट्य

8 years old girl: SC > 3 SD

- School results deteriorated during the past year
- Calculation A → D
- Handwriting is harder to read
- becomes more clumsy
- slow
- no other symptoms/ complaints

en nut door vertel ひいり hour In withmay leker aak en spel gaet ak heelleel

8 years old girl: SC > 3 SD

- School results deteriorated during the past year
- Calculation $A \rightarrow D$
- Handwriting is harder to read
- becomes more clumsy
- slow
- no other symptoms/ complaints

 MRI: obstructive hydrocephalus associated with a small tumor in the mesencephalon

Obstructive hydrocephalus in a girl with a tectum glioma

Treatment: ventriculostomy

 Neglect/ inattention before ventriculostomy

vin a gragetre leker. ik en nut door vertel how it with may aap leker an bred gaet

 Neglect/ inattentie after ventriculostomy

groep troep krans knop ploeg

grof

preek voorkour

geans

traag laaris

start

(zafing

Treatment: ventriculostomie (tumor stabiel)

- Follow up:
- Finished high school
- Now in college
- No motor problems
- No endocrine problems

 Neglect/ inattention after ventriculostomy

groep troep krans knop ploeg

preek voorkeur

geans

traaj laars

start

Increased growth of brain

AKT 3 mutation: megalencephaly and mental retardation

Nellist et al: Germline activating AKT3 mutation associated with megalencephaly, polymicrogyria, epilepsy and hypoglycemia. Molecular Genetics and Metabolism 114;3: 2015, 467–73

Erasmus MC

Increased growth of brain tissue

- Metabolic disease
 - Mucopolysaccharidosis
 - Mucolipidosis

Increased growth of brain tissue

- Normal neurological investigation
 - overgrowth,
 - PTEN hamartoma, mental retardation
 - Neurocutaneous syndromes

Cowden: Orale papilloma and trichilemmoma

Genetic (cognitive) disorders associated with the RAS/ERK/mTOR pathway

Basal cel naevus syndrome / Gorlin syndrome : chromsome 9q 22-23 – PTCH1 gen

- Learning problems
- Dysmorfisms:

Macrocephaly, hypertelorism

- Skin
- Basal cel carcinomas on sun exposed skin
- Palmar pits op voetzolen en handen
- Skelet deformities
 - Odontogenic cysts of the jaw, spina bifida occulta, kyfoscoliosis, rib abnormalities

Basal cel naevus syndrome / Gorlin syndrome : chromosome 9q 22-23 –PTCH1 gen

CNS

- Hydrocephalus.
- Agenesis Corpus Callosum -
- Medulloblastoma (5%)

zamo

Macrocephaly AND skin abnormalities in children with a developmental and behavioural disorder

Genetic (cognitive) disorders associated with the RAS/ERK/mTOR pathway

Macrocephaly AND skin abnormalities in children with a developmental and behavioural disorder

- Neurofibromatosis
- Two or more of the following clinical features must be present:
 - Summary of NIH diagnostic clinical criteria for NF1 the first step for us clinicians!

NF1: summary of general characteristics

- NF1 is a multisystem disease and not rare !!
- Incidence: approximately 1 in 3000 individuals
- Mutations in the NF1 gene, located at chromosome 17q11.2 -
 - many pathogenic mutations recognised
 - poor genotype- fenotype correlation

- Neurofibromin is the protein product encoded by the gene
- Neurofibromin is expressed in many tissues, including brain, kidney, spleen, and thymus, osteocytes

- 1. Six or more café au lait maculae
- 0,5 cm diameter before puberty
- 1,5 cm diameter after puberty

(often appear after 6 months of age)

2. Two or more cutaneous neurofibroma or one or more plexiform neurofibroma

2. Two or more cutaneous neurofibroma or one or more plexiform neurofibroma

Appear after puberty, not of help for diagnosis at young age !

 Freckling in the axillary or inguinal (children often > 6 years)

4. Optic pathway glioma (20% of chldren with NF1)

often asymptomatic

5. NF1: plexiform neurofibroma

6. Two or more Lisch noduli

(iris hamartoma = mostly occur after age 10)

7. Skeleton dysplasia (dysplasia os sphenoidale or cortical thinning of long bones with or without pseudoarthrosis)

Erasmus MC

8. First grade family member with NF1

School performance of 86 Dutch NF1 children

Erasmus MC

zafino

Krab et al. J. Child Neurol. 2008; 23:1002-10

- Average 10-15 points lower IQ
- Visuospatial impairment
- Attention-deficit-hyper-activity disorder (up to 40%)
- Problems in executive functioning
- Fine and gross motor coordination deficits

(Systematic review: Lehtonen et al., 2013)

21-25% autism spectrum disorder

(Garg et al., Pediatrics; Plasschaert et al., J Autism Dev

Disord.)

Tuberous Sclerosis Complex

- Autosomal dominant, 67% new mutations (incidence 1:10.000)
- 100% penetrance, variable expression
- TSC1 gene: chromosome 9q34
 - Hamartine
- TSC2 gene: chromosome 16p13.3
 - Tuberine
- Hamartine-tuberine complex/ negative regulator of cel cycle

Adenoma sebaceum

Hypomelanotic maculae

TSC: hypomelanotic maculae

Angiofibromata in TSC patients

Othe cutaneous spotd in TSC

- Plaques
- Shagreen patch/ Peau de chagrin

afing

Abnormalities mouth and nails in TSC

CZS pathology in TSC

- Cortical tubers (>80 %)
- Subependymal noduli (80%)

- Subependymal giant cell tumor (6-14%)
 - Benign/ 10-30 jaar

60% of TSC patienst have a cognitive impairment

Cognitive restricitionion TSC1 and TSC 2

Van Eeghen et al. Eur J Hum Genetics

TSC1

TSC2

Erasmus MC

zafing

Severity of mental retardation in TSC dependent of

- Cerebral abnormalities
 - Number of tubers,
 - migration lines
- Epilepsy (age at onset, seizure typem response to treatment)

Jansen Neurology 2008, van Eeghen J Ped Neurradiology 2013

Knowledge of molecular pathways involved in genetic cognitive disorders leads to new treaments of the symptoms of these syndromes

Erasmus MC

Knowledge of molecular pathways involved in genetic cognitive disorders leads to new treatments of the symptoms of these syndromes

Erasmus MC

Conclusion: clinical observation gives the most important clues to the cause of mental retardation

← Skull circumference and shape

←Skin abnormalities

← locomotion

← Behaviour

←Dysmorfic features

Bridging Worlds – Child Neurology from a Global Perspective

